

Building Business-Ready
Generative AI Systems

Build Human-Centered Generative AI Systems with Agents,
Memory, and LLMs for Enterprise

Denis Rothman

Building Business-Ready Generative AI Systems

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Gebin George

Relationship Lead: Ali Abidi

Project Manager: Prajakta Naik

Content Engineer: Tanya D’cruz

Technical Editor: Rahul Limbachiya

Copy Editor: Safis Editing

Indexer: Hemangini Bari

Proofreader: Tanya D’cruz

Production Designer: Shantanu Zagade

Growth Lead: Nimisha Dua

Marketing Owner: Dipali Malwatkar

First published: July 2025

Production reference: 1220725

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83702-069-0

www.packtpub.com

www.packtpub.com

I would like to dedicate this book to my family and friends who are my source of happiness.

– Denis Rothman

Contributors

About the author
Denis Rothman is a graduate of Sorbonne University and Paris-Diderot University. He pioneered

one of the first patented word2matrix embedding algorithms and AI-powered conversational

agents. Early in his career, Denis developed a cognitive NLP chatbot adopted by Moët & Chandon

and other global brands as an automated language trainer. He later created an AI resource opti-

mizer for Airbus (formerly Aérospatiale), which was implemented by IBM and leading companies

in the apparel industry. His Advanced Planning and Scheduling (APS) solution, used worldwide,

has shaped supply chain intelligence across sectors.

Through his books, Denis shares his experience of innovation with a global community of thinkers,

builders, and learners committed to shaping AI with purpose.

About the reviewers
Martin Yanev is an experienced software engineer who has spent nearly a decade tackling

complex challenges in fields like aerospace and medical technology. As an instructor and professor

of computer science at Fitchburg State University, Martin is deeply familiar with OpenAI’s suite

of APIs and excels at building, training, and refining practical AI systems. He is also a recognized

author who enjoys making AI development accessible to others.

Leonid Ganeline is a machine learning engineer with extensive experience in natural language

processing. He has worked at several startups, creating AI applications, models, and production

systems. He is an active contributor to LangChain, with a particular interest in model quantiza-

tion and AI agent architectures.

Lavanya Gupta is a Carnegie Mellon University (CMU) alumna from the Language Technologies

Institute (LTI). She currently works as a Senior AI/ML Applied Associate at JPMorgan Chase, within

their specialized Machine Learning Center of Excellence (MLCOE). She has delivered several talks

at events and conferences, including WiDS, PyData, SciPy, Illuminate AI, and the TensorFlow User

Group. She also actively supports early-career professionals through mentorship programs with

Anita Borg and Women in Coding and Data Science (WiCDS).

Subscribe for a Free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/TRO5B or scan the QR code below.

https://packt.link/TRO5B

Table of Contents

Preface � xvii

Your Book Comes with Exclusive Perks – Here’s How to Unlock Them ���������������������������� xxiii

Chapter 1: Defining a Business-Ready Generative AI System � 1

Components of a business-ready GenAISys �� 2

AI controllers • 3

Model-agnostic approach to generative AI • 4

Building the memory of a GenAISys • 6

RAG as an agentic multifunction co-orchestrator • 8

Human roles • 11

GenAISys implementation and governance teams • 11

GenAISys RACI • 13

Business opportunities and scope �� 16

Hybrid approach • 17

Key characteristics • 17

Use case examples • 17

Small scope and scale • 17

Key characteristics • 18

Use case examples • 18

Full-scale GenAISys • 18

Key characteristics • 18

Use case examples • 19

Contextual awareness and memory retention �� 19

Setting up the environment • 20

Downloading OpenAI resources • 23

1. Stateless and memoryless session • 28

Table of Contentsviii

Semantic query • 29

Episodic query with a semantic undertone • 29

Stateless and memoryless verification • 30

2. Short-term memory session • 31

3. Long-term memory of multiple sessions • 33

4. Long-term memory of multiple cross-topic sessions • 34

Summary ��� 36

Questions ��� 37

References �� 37

Further reading �� 37

Chapter 2: Building the Generative AI Controller � 39

Architecture of the AI controller ��� 40

Conversational AI agent ��� 42

Setting up the environment • 43

Conversational AI agent workflow • 43

Starting the initial conversation • 44

The full-turn conversation loop • 48

Running the conversational AI agent • 50

Next steps • 57

AI controller orchestrator ��� 58

Understanding the intent functionality • 60

From T5 to GPT models • 61

Corpus of Linguistic Acceptability (CoLA) • 61

Translation task • 63

Semantic Textual Similarity Benchmark (STSB) • 63

Summarization • 64

Implementing the orchestrator for instruction selection • 64

Selecting a scenario • 66

Defining task/instruction scenarios • 66

Performing intent recognition and scenario selection • 68

Table of Contents ix

Running scenarios with the generative AI agent • 70

Sentiment analysis • 70

Semantic analysis • 71

Summary ��� 72

Questions ��� 73

References �� 73

Further reading �� 73

Chapter 3: Integrating Dynamic RAG into the GenAISys � 75

Architecting RAG for dynamic retrieval �� 76

Scenario-driven task execution • 77

Hybrid retrieval and CoT • 79

Building a dynamic Pinecone index ��� 81

Setting up the environment • 81

Installing Pinecone • 82

Initializing the Pinecone API key • 84

Processing data • 85

Data loading and chunking • 85

Embedding the dataset • 87

Creating the Pinecone index • 90

Upserting instruction scenarios into the index �� 95

Upserting classical data into the index ��� 99

Data loading and chunking • 99

Querying the Pinecone index ��� 102

Querying functions • 103

Querying the vector store and returning results • 104

Processing the queries • 105

Retrieval queries • 106

Summary ��� 108

Questions ��� 109

References �� 109

Table of Contentsx

Chapter 4: Building the AI Controller Orchestration Interface � 111

Architecture of an event-driven GenAISys interface �� 112

Building the processes of an event-driven GenAISys interface �� 114

1. Start • 117

2. Initialize widgets • 118

3. Display the UI • 120

4. Input box event • 121

5. chat(user_message) function • 121

6. If ‘exit’ is chosen • 122

7. If user(s) continue the conversation • 123

8. Generate bot response • 124

9. Update display • 124

Conversational agent �� 125

Multi-user, multi-turn GenAISys session �� 129

A session with two users • 131

The interactive conversation • 132

Loading and displaying the conversation • 136

Loading and summarizing the conversation • 138

Multi-user session • 141

Semantic and sentiment analysis • 141

RAG for episodic memory retrieval • 144

Generative AI agent for ideation • 145

Dialogue without an AI conversational agent • 146

Loading, displaying, and summarizing the conversation • 148

Summary �� 149

Questions �� 149

References �� 150

Further reading �� 150

Table of Contents xi

Chapter 5: Adding Multimodal, Multifunctional Reasoning
with Chain of Thought � 151

Enhancing the event-driven GenAISys interface ��� 152

IPython interface and AI agent enhancements • 155

Layer 1: IPython interface • 156

Layer 2: AI agent • 160

Layer 3: Functions • 163

Setting up the environment �� 163

OpenAI • 164

Initializing gTTS, machine learning, and CoT • 165

Image generation and analysis �� 167

Image generation • 169

Image analysis • 171

Reasoning with CoT �� 173

CoT in GenAISys versus traditional software sequences • 174

Cognitive flow of CoT reasoning • 175

Start • 177

Step 1: ML-baseline • 177

Step 2: Suggest activities • 181

Step 3: Generate image • 181

Step 4: Analyze image • 182

End • 183

Running CoT reasoning from a user perspective �� 183

Summary �� 187

Questions �� 187

References �� 188

Chapter 6: Reasoning E-Marketing AI Agents � 189

Designing the consumer GenAISys memory agent �� 191

Consumer-memory agent use case • 191

Defining memory structures • 193

Table of Contentsxii

Enhancing the architecture of the GenAISys • 196

Building the consumer memory agent �� 197

The dataset: Hotel reviews • 198

Step 1: Memory and sentiment analysis • 201

Designing a complex system message for Step 1 • 202

Running the memory analysis • 207

Step 2: Extract sentiment scores • 209

Step 3: Statistics • 211

Step 4: Content creation • 212

Step 5: Creating an image • 215

Step 6: Creating a custom message • 215

GenAISys interface: From complexity to simplicity ��� 217

Adding the CoT widget • 218

Enhancing the AI agent • 220

Generalizing the GenAISys capabilities • 221

Summary ��� 223

Questions ��� 223

References �� 224

Further reading �� 224

Chapter 7: Enhancing the GenAISys with DeepSeek � 227

Balancing model evolution with project needs �� 228

DeepSeek-V3, DeepSeek-V1, and R1-Distill-Llama: Overview �� 229

Getting started with DeepSeek-R1-Distill-Llama-8B �� 231

Setting up the DeepSeek Hugging Face environment • 232

Downloading DeepSeek • 233

Running a DeepSeek-R1-Distill-Llama-8B session • 234

Integrating DeepSeek-R1-Distill-Llama-8B • 237

Implementing the handler selection mechanism as an orchestrator of the GenAISys ������ 238

What is a handler? • 240

Why is a handler better than a traditional if...then list? • 240

Table of Contents xiii

1. IPython interface �� 240

File management • 243

2. Handler selection mechanism �� 244

3. Handler registry ��� 246

Pinecone/RAG handler • 248

Reasoning handler • 248

Analysis handler • 249

Generation handler • 249

Image handler • 249

Fallback memory handler • 250

4. AI functions ��� 251

RAG • 251

Sentiment analysis (genaisys) • 253

Semantic analysis (genaisys) • 254

Data retrieval (data01) • 255

Chain of thought • 256

Analysis (memory) • 256

Generation • 258

Creating an image • 259

Fallback handler (memory-based) • 261

Summary ��� 266

Questions ��� 267

References �� 267

Further reading �� 268

Chapter 8: GenAISys for Trajectory Simulation and Prediction � 269

Trajectory simulations and predictions ��� 270

Challenges in large-scale mobility forecasting • 271

From traditional models to LLMs • 272

Key contributions of the paper • 272

Reformulating trajectory prediction as a Q&A • 272

Table of Contentsxiv

Instruction tuning for domain adaptation • 273

Handling missing data • 273

Building the trajectory simulation and prediction function ��� 274

Creating the trajectory simulation • 276

Visualizing the trajectory simulator • 279

Output of the simulation function • 280

Creating the mobility orchestrator • 280

Preparing prediction instructions and the OpenAI function • 283

Message preparation • 283

Fitting the messages together • 286

Implementing the messages into the OpenAI API function • 286

Trajectory simulation, analysis, and prediction • 288

Adding mobility intelligence to the GenAISys �� 292

IPython interface • 294

Creating the option in instruct_selector • 294

Handling the “mobility” value in update_display() • 296

handle_submission() logic • 296

Handler selection mechanism • 297

AI functions • 298

Running the mobility-enhanced GenAISys �� 299

Production-delivery verification scenario • 300

Fire disaster scenario • 305

Summary ��� 307

Questions ��� 307

References �� 308

Further reading �� 308

Chapter 9: Upgrading the GenAISys with Data Security
and Moderation for Customer Service � 309

Enhancing the GenAISys �� 310

Adding a security function to the handler selection mechanism ��������������������������������������� 312

Table of Contents xv

Implementing the security function • 313

Handler selection mechanism interactions • 316

Implementing the moderation function • 317

Building the data security function • 321

Populating the Pinecone index • 321

Querying the Pinecone index • 323

Running security checks • 325

Building a weather forecast component �� 328

Setting up the OpenWeather environment • 329

Adding a weather widget to the interface • 332

Adding a handle to the handler registry • 333

Adding the weather forecast function to AI functions • 334

Running the GenAISys ��� 335

A multi-user, cross-domain, and multimodal dialogue • 337

Summary ��� 353

Questions ��� 354

References �� 354

Further reading �� 354

Chapter 10: Presenting Your Business-Ready Generative AI System � 355

Designing the presentation of the GenAISys �� 356

Building a flexible HTML interface �� 358

1. Presenting the core GenAISys • 364

2. Presenting the vector store • 368

3. Human-centric approach to KPIs • 370

ROI through growth • 371

Adding a real-time KPI to the GenAISys web interface • 374

4. Integration: Platforms and frameworks • 377

Showcasing advanced frameworks: A MAS • 380

Strategic integration options for the MAS • 383

5. Security and privacy • 384

Table of Contentsxvi

6. Customization • 387

7. GenAISys resources (RACI) • 390

Summary ��� 392

Questions ��� 393

References �� 394

Further reading �� 394

Answers � 395

Other Books You May Enjoy � 405

Index � 409

Preface

In the rapidly evolving AI landscape, standalone large language models (LLMs) alone don’t de-

liver business value. This comprehensive guide enables you to become a generative AI architect,

building powerful ChatGPT-grade systems from scratch that are adaptable to any platform. You’ll

go beyond basic chatbots, developing systems capable of semantic and sentiment analysis—with

context-aware AI controllers at their core.

You’ll walk through the complete journey of designing an AI controller architecture with multi-user

memory retention, enabling the system to adapt to diverse user and system inputs. Building on

this foundation, you’ll architect a dynamic retrieval-augmented generation (RAG) system using

Pinecone, designed to intelligently combine instruction scenarios.

With powerful multimodal capabilities—including image generation, voice interactions, and

machine-driven reasoning—you’ll expand your system’s intelligence using chain-of-thought

orchestration to tackle the cross-domain automation challenges that real business environments

demand. You’ll also be fully equipped to integrate cutting-edge models such as OpenAI’s LLMs

and DeepSeek-R1 into your AI system—confident that it will remain stable, scalable, and

production-ready even in the turbulent pace of today’s AI ecosystem.

By the end, your generative AI system (GenAISys) will be capable of trajectory analysis and human

mobility prediction, even when working with incomplete data. It will bring neuroscience-in-

spired insight to your marketing messages, integrate seamlessly into human workflows, visualize

complex delivery and movement scenarios, and connect to live external data—all wrapped in a

polished, investor-ready interface.

Prefacexviii

Who this book is for
This book is for AI and machine learning engineers, software architects, and enterprise developers

seeking to architect and build a comprehensive GenAISys from scratch for enterprise applications.

It will particularly benefit those interested in building AI agents, creating advanced orchestration

systems, and leveraging AI for automation in marketing, production, and logistics. Software

architects and enterprise developers looking to build scalable AI-driven systems will also find

immense value in this guide. No prior superintelligence experience is necessary, but familiarity

with AI concepts is recommended.

What this book covers
Chapter 1, Defining a Business-Ready Generative AI System, explains how to design robust,

ChatGPT-level AI systems tailored for business use, incorporating AI controllers, agents, con-

textual awareness, advanced memory retention, and strategic human collaboration. You will

explore how to go beyond basic model integrations to build AI solutions that deliver real-world

business results across industries and become an architect who can adapt to any environment.

Chapter 2, Building the Generative AI Controller, dives into hands-on development of adaptive

AI controllers, combining conversational agents and orchestrators. You’ll become proficient in

building a GenAISys that dynamically responds to user input, leverages advanced memory man-

agement, and orchestrates tasks such as sentiment and semantic analysis, which are essential

for real-world, data-intensive applications.

Chapter 3, Integrating Dynamic RAG into the GenAISys, teaches you how to architect a scalable,

dynamic RAG system using Pinecone, effectively combining instruction scenarios and classical

data. You will discover how to build adaptable generative AI solutions capable of responding

rapidly to real-world business disruptions and domain-specific challenges.

Chapter 4, Building the AI Controller Orchestration Interface, shows how to build a collaborative,

event-driven generative AI interface designed for rapid, real-world business responses. We’ll

create a practical, multi-user conversational AI that integrates seamlessly into human workflows,

enhancing decision-making during critical scenarios.

Chapter 5, Adding Multimodal, Multifunctional Reasoning with Chain of Thought, enhances our

GenAISys with OpenAI’s powerful multimodal capabilities, including image generation, voice

interactions, and machine-driven reasoning. We’ll expand our system’s intelligence using chain-

of-thought orchestration—enabling smart automation tailored to complex, cross-domain busi-

ness scenarios.

Preface xix

Chapter 6, Reasoning E-Marketing AI Agents, harnesses the power of AI-driven memory analysis

to create marketing messages customers remember. We’ll build a consumer memory agent that

intelligently analyzes reviews and emotions, producing personalized marketing content enhanced

by multimodal reasoning—bringing neuroscience insights directly into our GenAISys.

Chapter 7, Enhancing the GenAISys with DeepSeek, navigates the rapid evolution of AI without

compromising stability. You will learn how to strategically integrate cutting-edge models such

as DeepSeek-R1 into our GenAISys, using a flexible handler selection mechanism—enabling our

system to remain adaptable, scalable, and production-ready in a fast-changing market.

Chapter 8, GenAISys for Trajectory Simulation and Prediction, brings advanced AI-driven trajectory

analysis into our GenAISys to precisely predict human mobility and deliveries, even with incom-

plete data. We’ll build an intuitive pipeline that leverages LLMs to simulate, analyze, and visualize

complex delivery and movement scenarios, transforming spatial data into actionable insights.

Chapter 9, Upgrading the GenAISys with Data Security and Moderation for Customer Service,

connects our GenAISys securely to real-world data by integrating live weather information, travel

information, robust moderation tools, and advanced security features. You will discover how to

safely extend our AI’s capabilities beyond internal data, enabling personalized marketing, dynamic

activity recommendations, and real-time customer interactions.

Chapter 10, Presenting Your Business-Ready Generative AI System, will show you how to turn your

GenAISys proof of concept into a compelling, investor-ready showcase. We’ll learn how to effec-

tively present our AI system with clear messaging, practical demos, and a polished user interface,

capturing audience attention, demonstrating value, and proving readiness to scale in a crowded

AI marketplace.

To get the most out of this book
You don’t need to be an AI expert to benefit from this guide, just some familiarity with the basics

of artificial intelligence and programming. If you’ve worked with Python or explored LLMs like

ChatGPT, you’ll feel right at home.

This book introduces concepts like AI agent orchestration, memory retention, and RAG in clear,

hands-on steps. Whether you’re a developer, engineer, or curious technologist, you’ll find tools,

code, and explanations designed to support real-world applications.

No deep math or theoretical background is required, only a desire to build meaningful AI systems

that solve business problems and scale in production environments.

Prefacexx

The code is available in Google Colab notebooks with automated installations or you can down-

load the code locally.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/Denis2054/Building-

Business-Ready-Generative-AI-Systems. We also have other code bundles from our rich catalog

of books and videos available at https://github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781837020690.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter/X handles. For example: “Next,

we incorporate instruct_selector into the existing interface layout (VBox).”

A block of code is set as follows:

Ensure 'Instructions' exists in the memory_selector options

instruct_selector = Dropdown(

 options=["None","Analysis", "Generation"],

 value="None", # Ensure default active_memory is in the options

 description='Reasoning:',

 layout=Layout(width='50%')

)

Any command-line input or output is written as follows:

Response: The dialog begins by explaining the formation of Hawaii's
volcanic islands as the Pacific Plate moves over a stationary hotspot,
leading to active volcanoes like Kilauea….

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems
https://github.com/PacktPublishing
https://packt.link/gbp/9781837020690

Preface xxi

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “The user then reenters

the sentence, but this time with the Generation option and the Files option checked, so that the

image generated with the text will be displayed.”

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-

back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packt.com/submit-errata
http://authors.packt.com/

Prefacexxii

Share your thoughts
Once you’ve read Building Business-Ready Generative AI Systems, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share your

feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

Join our Discord and Reddit space
You’re not the only one navigating fragmented tools, constant updates, and unclear best

practices. Join a growing community of professionals exchanging insights that don’t make it

into documentation.

Stay informed with updates, discussions,

and behind-the-scenes insights from our

authors. Join our Discord at https://packt.

link/z8ivB or scan the QR code below:

Connect with peers, share ideas, and discuss

real-world GenAI challenges. Follow us on

Reddit at https://packt.link/0rExL or

scan the QR code below:

https://packt.link/r/1837020698
https://packt.link/z8ivB
https://packt.link/z8ivB
https://packt.link/0rExL

Preface xxiii

Your Book Comes with Exclusive Perks – Here’s How
to Unlock Them

Enhanced reading experience with our Next-gen Reader:

Multi-device progress sync: Learn from any device with seamless progress sync.

Highlighting and notetaking: Turn your reading into lasting knowledge.

Bookmarking: Revisit your most important learnings anytime.

Dark mode: Focus with minimal eye strain by switching to dark or sepia mode.

Learn smarter using our AI assistant (Beta):

 Summarize it: Summarize key sections or an entire chapter.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search this

book by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

Prefacexxiv

 AI code explainers: In the next-gen Packt Reader, click the Explain button above each code

block for AI-powered code explanations.

Learn anytime, anywhere:

Access your content offline with DRM-free PDF and ePub versions—compatible with your

favorite e-readers.

Unlock Your Book’s Exclusive Benefits
Your copy of this book comes with the following exclusive benefits:

 Next-gen Packt Reader

 AI assistant (beta)

 DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few min-

utes and needs to be done only once.

How to unlock these benefits in three easy steps
Step 1
Keep your purchase invoice for this book ready, as you’ll need it in Step 3. If you received a physical

invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

 Note: The AI assistant is part of next-gen Packt Reader and is still in beta.

 Note: Did you buy this book directly from Packt? You don’t need an invoice. After

completing Step 2, you can jump straight to your exclusive content.

https://www.packtpub.com/unlock-benefits/help
https://github.com/PacktPublishing

Preface xxv

Step 3
Sign in to your Packt account or create a new one for free. Once you’re logged in, upload your

invoice. It can be in PDF, PNG, or JPG format and must be no larger than 10 MB. Follow the rest

of the instructions on the screen to complete the process.

Step 2
Scan this QR code or go to packtpub.com/unlock.

On the page that opens (which will look similar to Figure 0.1 if you’re on desktop), search for this

book by name. Make sure you select the correct edition.

Figure 0.1: Packt unlock landing page on desktop

http://packtpub.com/unlock

Prefacexxvi

Need help?
If you get stuck and need help, visit https://www.packtpub.com/

unlock-benefits/help for a detailed FAQ on how to find your in-

voices and more. The following QR code will take you to the help

page directly:

 Note: If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help
http://authors.packt.com/

1
Defining a Business-Ready
Generative AI System

Implementing a generative AI system (GenAISys) in an organization doesn’t stop at simply

integrating a standalone model such as GPT, Grok, Llama, or Gemini via an API. While this is

often a starting point, we often mistake it as the finish line. The rising demand for AI, as it expands

across all domains, calls for the implementation of advanced AI systems that go beyond simply

integrating a prebuilt model.

A business-ready GenAISys should provide ChatGPT-grade functionality in an organization, but

also go well beyond it. Its capabilities and features must include natural language understand-

ing (NLU), contextual awareness through memory retention across dialogues in a chat session,

and agentic functions such as autonomous image, audio, and document analysis and generation.

Think of a generative AI model as an entity with a wide range of functions, including AI agents

as agentic co-workers.

We will begin the chapter by defining what a business-ready GenAISys is. From there, we’ll focus

on the central role of a generative AI model, such as GPT-4o, that can both orchestrate and exe-

cute tasks. Building on that, we will lay the groundwork for contextual awareness and memory

retention, discussing four types of generative AI memory: memoryless, short-term, long-term,

and multiple sessions. We will also define a new approach to retrieval-augmented generation

(RAG) that introduces an additional dimension to data retrieval: instruction and agentic reasoning

scenarios. Adding instructions stored in a vector store takes RAG to another level by retrieving

instructions that we can add to a prompt. In parallel, we will examine a critical component of a

Defining a Business-Ready Generative AI System2

GenAISys: human roles. We will see how, throughout its life cycle, an AI system requires human

expertise. Additionally, we will define several levels of implementation to adapt the scope and

scale of a GenAISys, not only to business requirements but also to available budgets and resources.

Finally, we’ll illustrate how contextual awareness and memory retention can be implemented us-

ing OpenAI’s LLM and multimodal API. A GenAISys cannot work without solid memory retention

functionality—without memory, there’s no context, and without context, there’s no sustainable

generation. Throughout this book, we will create modules for memoryless, short-term, long-term,

and multisession types depending on the task at hand. By the end of this chapter, you will have

acquired a clear conceptual framework for what makes an AI system business-ready and practical

experience in building the first bricks of an AI controller.

In a nutshell, this chapter covers the following topics:

•	 Components of a business-ready GenAISys

•	 AI controllers and agentic functionality (model-agnostic)

•	 Hybrid human roles and collaboration with AI

•	 Business opportunities and scope

•	 Contextual awareness through memory retention

Let’s begin by defining what a business-ready GenAISys is.

Components of a business-ready GenAISys
A business-ready GenAISys is a modular orchestrator that seamlessly integrates standard AI

models with multifunctional frameworks to deliver hybrid intelligence. By combining genera-

tive AI with agentic functionality, RAG, machine learning (ML), web search, non-AI operations,

and multiple-session memory systems, we are able to deliver scalable and adaptive solutions for

diverse and complex tasks. Take ChatGPT, for example; people use the name “ChatGPT” inter-

changeably for the generative AI model as well as for the application itself. However, behind the

chat interface, tools such as ChatGPT and Gemini are part of larger systems—online copilots—that

are fully integrated and managed by intelligent AI controllers to provide a smooth user experience.

It was Tomczak (2024) who took us from thinking of generative AI models as a collective entity to

considering complex GenAISys architectures. His paper uses the term “GenAISys” to describe these

more complex platforms. Our approach in this book will be to expand the horizon of a GenAISys

to include advanced AI controller functionality and human roles in a business-ready ecosystem.

There is no single silver-bullet architecture for a GenAISys. However, in this section, we’ll define

the main components necessary to attain ChatGPT-level functionality. These include a generative

Chapter 1 3

AI model, memory retention functions, modular RAG, and multifunctional capabilities. How each

component contributes to the GenAISys framework is illustrated in Figure 1.1:

Figure 1.1: GenAISys, the AI controller, and human roles

Let’s now define the architecture of the AI controllers and human roles that make up a GenAISys.

AI controllers
At the heart of a business-ready GenAISys is an AI controller that activates custom ChatGPT-level

features based on the context of the input. Unlike traditional pipelines with predetermined task

sequences, the AI controller operates without a fixed order, dynamically adapting tasks—such

as web search, image analysis, and text generation—based on the specific context of each input.

This agentic context-driven approach enables the AI controller to orchestrate various components

seamlessly, ensuring effective and coherent performance of the generative AI model.

A lot of work is required to achieve effective results with a custom ChatGPT-grade AI controller.

However, the payoff is a new class of AI systems that can withstand real-world pressure and

produce tangible business results. A solid AI controller ecosystem can support use cases across

multiple domains: customer support automation, sales lead generation, production optimization

(services and manufacturing), healthcare response support, supply chain optimization, and any

other domain the market will take you! A GenAISys, thus, requires an AI controller to orchestrate

multiple pipelines, such as contextual awareness to understand the intent of the prompt and

memory retention to support continuity across sessions.

Defining a Business-Ready Generative AI System4

The GenAISys must also define human roles, which determine which functions and data can be

accessed. Before we move on to human roles, however, let’s first break down the key components

that power the AI controller. As shown in Figure 1.1, the generative AI model, memory, modular

RAG, and multifunctional capabilities each play vital roles in enabling flexible, context-driven

orchestration. Let’s explore how these elements work together to build a business-ready GenAISys.

We will first define the role of the generative AI model.

Model-agnostic approach to generative AI
When we build a sustainable GenAISys, we need model interchangeability—the flexibility to swap

out the underlying model as needed. A generative AI model should serve as a component within

the system, not as the core that the system is built around. That way, if our model is deprecated

or requires updating, or we simply find a better-performing one, we can simply replace it with

another that better fits our project.

As such, the generative AI model can be OpenAI’s GPT, Google’s Gemini, Meta’s Llama, xAI’s

Grok, or any Hugging Face model, as long as it supports the required tasks. Ideally, we should

choose a multipurpose, multimodal model that encompasses text, vision, and reasoning abilities.

Bommasani et al. (2021) provide a comprehensive analysis of such foundation models, whose

scope reaches beyond LLMs.

A generative AI model has two main functions, as shown in Figure 1.2:

•	 Orchestrates by determining which tasks need to be triggered based on the input. This

input can be a user prompt or a system request from another function in the pipeline. The

orchestration function agent can trigger web search, document parsing, image generation,

RAG, ML functions, non-AI functions, and any other function integrated into the GenAISys.

•	 Executes the tasks requested by the orchestration layer or executes a task directly based

on the input. For example, a simple query such as requesting the capital of the US will

not necessarily require complex functionality. However, a request for document analysis

might require several functions (chunking, embedding, storing, and retrieving).

Chapter 1 5

Figure 1.2: A generative AI model to orchestrate or execute tasks

Notice that Figure 1.2 has a unique feature. There are no arrows directing the input, orchestration,

and execution components. Unlike traditional hardcoded linear pipelines, a flexible GenAISys has

its components unordered. We build the components and then let automated scenarios selected

by the orchestration function order the tasks dynamically.

This flexibility ensures the system’s adaptability to a wide range of tasks. We will not be able to

build a system that solves every task, but we can build one that satisfies a wide range of tasks

within a company. Here are two example workflows that illustrate how a GenAISys can dynam-

ically sequence tasks based on the roles involved:

•	 Human roles can be configured so that, in some cases, the user input executes a simple

API call to provide a straightforward response, such as requesting the capital of a country.

In this case, the generative AI model executes a request directly.

•	 System roles can be configured dynamically to orchestrate a set of instructions, such as

searching the web first and then summarizing the web page. In this case, the system goes

through an orchestration process to produce an output.

The possibilities are unlimited; however, all the scenarios will rely on the memory to ensure

consistent, context-aware behavior. Let’s look at memory next.

Defining a Business-Ready Generative AI System6

Building the memory of a GenAISys
Advanced generative AI models such as OpenAI’s GPT, Meta’s Llama, xAI’s Grok, Google’s Gemini,

and many Hugging Face variants are context-driven regardless of their specific version or perfor-

mance level. You will choose the model based on your project, but the basic rule remains simple:

No-context => No meaningful generation

When we use ChatGPT or any other copilot, we have nothing to worry about as contextual memory

is handled for us. We just start a dialogue, and things run smoothly as we adapt our prompt to

the level of responses we are obtaining. However, when we develop a system with a generative

AI API from scratch, we have to explicitly build contextual awareness and memory retention.

Four approaches stand out among the wide range of possible memory retention strategies with

an API:

•	 Stateless and memoryless session: A request is sent to the API, and a response is returned

with no memory retention functionality.

•	 Short-term memory session: The exchanges between the requests and responses are

stored in memory during the session but not beyond.

•	 Long-term memory of multiple sessions: The exchanges between the requests and re-

sponses are stored in memory and memorized even after the session ends.

•	 Long-term memory of multiple cross-topic sessions: This feature links the long-term

memory of multiple sessions to other sessions. Each session is assigned a role: a system or

multiple users. This feature is not standard in platforms such as ChatGPT but is essential

for workflow management within organizations.

Figure 1.3 sums up these four memory architectures. We’ll demonstrate each configuration in

Python using GPT-4o in the upcoming section, Contextual awareness and memory retention.

Chapter 1 7

Figure 1.3: Four different GenAISys memory configurations

These four memory types serve as a starting point that can be expanded as necessary when de-

veloping a GenAISys. However, practical implementations often require additional functionality,

including the following:

•	 Human roles to define users or groups of users that can access session history or sets of

sessions on multiple topics. This will take us beyond ChatGPT-level platforms. We will

introduce this aspect in Chapter 2, Building the Generative AI Controller.

•	 Storage strategies to define what we need to store and what we need to discard. We will

introduce storage strategies and take this concept further with a Pinecone vector store

in Chapter 3, Integrating Dynamic RAG into the GenAISys.

There are native distinctions between two key categories of memorization in generative models:

•	 Semantic memory, which contains facts such as hard science

•	 Episodic memory, which contains personal timestamped memories such as personal

events in time and business meetings

Defining a Business-Ready Generative AI System8

We can see that building a GenAISys’s memory requires careful design and deliberate development

to implement ChatGPT-grade memory and additional memory configurations, such as long-term,

cross-topic sessions. The ultimate goal, however, of this advanced memory system is to enhance

the model’s contextual awareness. While generative AI models such as GPT-4o have inbuilt con-

textual awareness, to expand the scope of a context-driven system such as the GenAISys we’re

building, we need to integrate advanced RAG functionality.

RAG as an agentic multifunction co-orchestrator
In this section, we explain the motivations for using RAG for three core functions within a Ge-

nAISys:

•	 Knowledge retrieval: Retrieving targeted, nuanced information

•	 Context window optimization: Engineering optimized prompts

•	 Agentic orchestration of multifunctional capabilities: Triggering functions dynamically

Let’s begin with knowledge retrieval.

1. Knowledge retrieval
Generative AI models excel when it comes to revealing parametric knowledge that they have

learned, which is embedded in their weights. This knowledge is learned during training and em-

bedded in models such as GPT, Llama, Grok, and Gemini. However, that knowledge stops at the

cutoff date when no additional data is fed to the model. At that point, to update or supplement

it, we have two options:

•	 Implicit knowledge: Fine-tune the model so that more trained knowledge is added to its

weights (parametric). This process can be challenging if you are working with dynamic

data that changes daily, such as weather forecasts, newsfeeds, or social media messages.

It also comes with costs and risks if the fine-tuning process doesn’t work that well for

your data.

•	 Explicit knowledge: Store the data in files or embed data in vector stores. The knowledge

will then be structured, accessible, traceable, and updated. We can then retrieve the in-

formation with advanced queries.

Chapter 1 9

It’s important to note here that static implicit knowledge cannot scale effectively without dynamic

explicit knowledge. More on that in the upcoming chapters.

2. Context window optimization
Generative AI models are expanding the boundaries of context windows. For example, at the time

of writing, the following are the supported context lengths:

•	 Llama 4 Scout: 10 million tokens

•	 Gemini 2.0 Pro Experimental: 2 million tokens

•	 Claude 3.7 Sonnet: 200,000 tokens

•	 GPT-4o: 128,000 tokens

While impressive, these large context windows can be expensive in terms of token costs and

compute. Furthermore, the main issue is that their precision diminishes when the context be-

comes too large. Also, we don’t need the largest context window but only the one that best fits

our project. This can justify implementing RAG if necessary to optimize a project.

The chunking process of RAG splits large content into more nuanced groups of tokens. When

we embed these chunks, they become vectors that can be stored and efficiently retrieved from

vector stores. This approach ensures we use only the most relevant context per task, minimizing

token usage and maximizing response quality. Thus, we can rely on generative AI capabilities

for parametric implicit knowledge and RAG for large volumes of explicit non-parametric data in

vector stores. We can take RAG further and use the method as an orchestrator.

3. Agentic orchestrator of multifunctional capabilities
The AI controller bridges with RAG through the generative AI model. RAG is used to augment the

model’s input with a flexible range of instructions. Now, using RAG to retrieve instructions might

seem counterintuitive at first—but think about it. If we store instructions as vectors and retrieve

the best set for a task, we get a fast, adaptable way to enable agentic functionality, generate ef-

fective results, and avoid the need to fine-tune the model every time we change our instruction

strategies for how we want it to behave.

Defining a Business-Ready Generative AI System10

These instructions act as optimized prompts, tailored to the task at hand. In this sense, RAG be-

comes part of the orchestration layer of the AI system. A vector store such as Pinecone can store

and return this functional information, as illustrated in Figure 1.4:

Figure 1.4: RAG orchestration functionality

The orchestration of these scenarios is performed through the following:

•	 Scenario retrieval: The AI controller will receive structure instructions (scenarios) from

a vector database, such as Pinecone, adapted to the user’s query

•	 Dynamic task activation: Each scenario specifies a series of tasks, such as web search,

ML algorithms, standard SQL queries, or any function we need

Adding classical functions and ML functionality to the GenAISys enhances its capabilities dra-

matically. The modular architecture of a GenAISys makes this multifunctional approach effective,

as in the following use cases:

•	 Web search to perform real-time searches to augment inputs

•	 Document analysis to process documents and populate the vector store

•	 Document search to retrieve parts of the processed documents from the vector store

•	 ML such as K-means clustering (KMC) to group data and k-nearest neighbors (KNN)

for similarity searches

•	 SQL queries to execute rule-based retrieval on structured datasets

•	 Any other function required for your project or workflow

Chapter 1 11

RAG remains a critical component of a GenAISys, which we will build into our GenAISys in

Chapter 3, Integrating Dynamic RAG into the GenAISys. In Chapter 3, Integrating Dynamic RAG into

the GenAISys, we will also enhance the system with multifunctional features.

We’ll now move on to the human roles, which form the backbone of any GenAISys.

Human roles
Contrary to popular belief, the successful deployment and operation of a GenAISys—such as the

ChatGPT platform—relies heavily on human involvement throughout its entire life cycle. While

these tools may seem to handle complex tasks effortlessly, behind the scenes are multiple layers

of human expertise, oversight, and coordination that make their smooth operation possible.

Software professionals must first design the architecture, process massive datasets, and fine-tune

the system on million-dollar servers equipped with cutting-edge compute resources. After deploy-

ment, large teams are required to monitor, validate, and interpret system outputs—continuously

adapting them in response to errors, emerging technologies, and regulatory changes. On top of

that, when it comes to deploying these systems within organizations—whether inside corporate

intranets, public-facing websites, research environments, or learning management systems—it

takes cross-functional coordination efforts across multiple domains.

These tasks require high levels of expertise and qualified teams. Humans are, therefore, not just

irreplaceable; they are critical! They are architects, supervisors, curators, and guardians of the

AI systems they create and maintain.

GenAISys implementation and governance teams
Implementing a GenAISys requires technical skills and teamwork to gain the support of end users.

It’s a collaborative challenge between AI controller design, user roles, and expectations. To anyone

who thinks that deploying a real-world AI system is just about getting access to a model—such

as the latest GPT, Llama, or Gemini—a close look at the resources required will reveal the true

challenges. A massive number of human resources might be involved in the development, deploy-

ment, and maintenance of an AI system. Of course, not every organization will need all of these

roles, but we must recognize the range of skills involved, such as the following:

•	 Project manager (PM)

•	 Product manager

•	 Program manager

•	 ML engineer (MLE)/data scientist

Defining a Business-Ready Generative AI System12

•	 Software developer/backend engineer (BE)

•	 Cloud engineer (CE)

•	 Data engineer (DE) and privacy manager

•	 UI/UX designer

•	 Compliance and regulatory officer

•	 Legal counsel

•	 Security engineer (SE) and security officer

•	 Subject-matter experts for each domain-specific deployment

•	 Quality assurance engineer (QAE) and tester

•	 Technical documentation writer

•	 System maintenance and support technician

•	 User support

•	 Trainer

These are just examples—just enough to show how many different roles are involved in building

and operating a full-scale GenAISys. Figure 1.5 shows that designing and implementing a GenAISys

is a continual process, where human resources are needed at every stage.

Figure 1.5: A GenAISys life cycle

Chapter 1 13

We can see that a GenAISys life cycle is a never-ending process:

•	 Business requirements will continually evolve with market constraints

•	 GenAISys design will have to adapt with each business shift

•	 AI controller specifications must adapt to technological progress

•	 Implementation must adapt to ever-changing business specifications

•	 User feedback will drive continual improvement

Real-world AI relies heavily on human abilities—the kind of contextual and technical under-

standing that AI alone cannot replicate. AI can automate a wide range of tasks effectively. But

it’s humans who bring the deep insight needed to align those systems with real business goals.

Let’s take this further and look at a RACI heatmap to show why humans are a critical component

of a GenAISys.

GenAISys RACI
Organizing a GenAISys project requires human resources that go far beyond what AI automation

alone can provide. RACI is a responsibility assignment matrix that helps define roles and responsi-

bilities for each task or decision by identifying who is Responsible, Accountable, Consulted, and

Informed. RACI is ideal for managing the complexity of building a GenAISys. It adds structure to

the growing list of human roles required during the system’s life cycle and provides a pragmatic

framework for coordinating their involvement.

As in any complex project, teams working on a GenAISys need to collaborate across disciplines,

and RACI helps define who does what. Each letter in RACI stands for a specific type of role:

•	 R (Responsible): The person(s) who works actively on the task. They are responsible for

the proper completion of the work. For example, an MLE may be responsible for processing

datasets with ML algorithms.

•	 A (Accountable): The person(s) answerable for the success or failure of a task. They over-

see the task that somebody else is responsible for carrying out. For example, the product

owner (PO) will have to make sure that the MLE’s task is done on time and in compliance

with the specifications. If not, the PO will be accountable for the failure.

•	 C (Consulted): The person(s) providing input, advice, and feedback to help the others in

a team. They are not responsible for executing the work. For example, a subject-matter

expert in retail may help the MLE understand the goal of an ML algorithm.

Defining a Business-Ready Generative AI System14

•	 I (Informed): The person(s) kept in the loop about the progress or outcome of a task. They

don’t participate in the task but want to be simply informed or need to make decisions.

For example, a data privacy officer (DPO) would like to be informed about a system’s

security functionality.

A RACI heatmap typically contains legends for each human role in a project. Let’s build a heatmap

with the following roles:

•	 The MLE develops and integrates AI models

•	 The DE designs data management pipelines

•	 The BE builds API interactions

•	 The frontend engineer (FE) develops end user features

•	 The UI/UX designer designs user interfaces

•	 The CE/DevOps engineer manages cloud infrastructure

•	 The prompt engineer (PE) designs optimal prompts

•	 The SE handles secure data and access

•	 The DPO manages data governance and regulation compliance

•	 The legal/compliance officer (LC) reviews the legal scope of a project

•	 The QAE tests the GenAISys

•	 The PO defines the scope and scale of a product

•	 The PM coordinates resources and timelines

•	 The technical writer (TW) produces documentation

•	 The vendor manager (VM) communicates with external vendors and service providers

Not every GenAISys project will include all of these roles, but depending on the scope and scale

of the project, many of them will be critical. Now, let’s list the key responsibilities of the roles

defined above in a typical generative AI project:

•	 Model: AI model development

•	 Controller: Orchestration of APIs and multimodal components

•	 Pipelines: Data processing and integration workflows

•	 UI/UX: User interface and experience design

•	 Security: Data protection and access control

Chapter 1 15

•	 DevOps: Infrastructure, scaling, and monitoring

•	 Prompts: Designing and optimizing model interactions

•	 QA: Testing and quality assurance

We’ve defined the roles and the tasks. Now, we can show how they can be mapped to a real-world

scenario. Figure 1.6 illustrates an example RACI heatmap for a GenAISys.

Figure 1.6: Example of a RACI heatmap

For example, in this heatmap, the MLE has the following responsibilities:

•	 (R)esponsible and (A)ccountable for the model, which could be GPT-4o.

•	 (R)esponsible and (A)ccountable for the prompts for the model

•	 (C)onsulted as an expert for the controller, the pipeline, and testing (QA)

•	 (I)nformed about the UI/UX, security, and DevOps

We can sum it up with one simple rule for a GenAISys:

No humans -> no system!

We can see that we are necessary during the whole life cycle of a GenAISys, from design to main-

tenance and support, including continual evolutions to keep up with user feedback. Humans

have been and will be here for a long time! Next, let’s explore the business opportunities that a

GenAISys can unlock.

Defining a Business-Ready Generative AI System16

Business opportunities and scope
More often than not, we will not have access to the incredible billion-dollar resources of OpenAI,

Meta, xAI, or Microsoft Azure to build ChatGPT-like platforms. The previous section showed that

beneath a ChatGPT-like, seemingly simple, seamless interface, there is a complex layer of expen-

sive infrastructure, rare talent, and continuous improvement and evolution that absorb resources

only large corporations can afford. Therefore, a smarter path from the start is to determine which

project category we are in and leverage the power of existing modules and libraries to build our

GenAISys. Whatever the use case, such as marketing, finance, production, or support, we need

to find the right scope and scale to implement a realistic GenAISys.

The first step of any GenAISys is to define the project’s goal (opportunity), including its scope and

scale, as we mentioned. During this step, you will assess the risks, such as costs, confidentiality,

and resource availability (risk management).

We can classify GenAISys projects into three main business implementation types depending on

our resources, our objectives, the complexity of our use case, and our budget. These are illustrated

in Figure 1.7:

•	 Hybrid approach: Leveraging existing AI platforms

•	 Small scope and scale: A focused GenAISys

•	 Full-scale generative multi-agent AI system: A complete ChatGPT-level generative AI

platform

Figure 1.7: The three main GenAISys business implementations

Chapter 1 17

Let’s begin with a hybrid approach, a practical way to deliver business results without overbuilding.

Hybrid approach
A hybrid framework enables you to minimize development costs and time by combining ready-

to-use SaaS platforms with custom-built components developed only when necessary, such as

web search and data cleansing. This way, you can leverage the power of generative AI without

developing everything from scratch. Let’s go through the key characteristics and a few example

use cases.

Key characteristics
•	 Relying on proven web services such as OpenAI’s GPT API, AWS, Google AI, or Microsoft

Azure. These platforms provide the core generative functionality.

•	 Customizing your project by integrating domain-specific vector stores and your organi-

zation’s proprietary datasets.

•	 Focusing development on targeted functionality, such as customer support automation

or marketing campaign generation.

Use case examples
•	 Implementing a domain-specific vector store to handle legal, medical, or product-related

customer queries

•	 Building customer support on a social media platform with real-time capabilities

This category offers the ability to do more with less—in terms of both cost and development

effort. A hybrid system can be a standalone GenAISys or a subsystem within a larger generative

AI platform where full-scale development isn’t necessary. Let’s now look at how a small-scope,

small-scale GenAISys can take us even further.

Small scope and scale
A small-scale GenAISys might include an intelligent, GenAI-driven AI controller connected to a

vector store. This setup allows the system to retrieve data, trigger instructions, and call additional

functionality such as web search or ML—without needing full-scale infrastructure.

Defining a Business-Ready Generative AI System18

Key characteristics
•	 A clearly defined profitable system designed to achieve reasonable objectives with optimal

development time and cost

•	 The AI controller orchestrates instruction scenarios that, in turn, trigger RAG, web search,

image analysis, and additional custom tasks that fit your needs

•	 The focus is on high-priority, productive features

Use case examples
•	 A GenAISys for document retrieval and summarization for any type of document with

nuanced analysis through chunked and embedded content

•	 Augmenting a model such as GPT or Llama with real-time web search to bypass its data

cutoff date—ideal for applications such as weather forecasting or news monitoring that

don’t need continual fine-tuning

This category takes us a step beyond the hybrid approach, while still staying realistic and manage-

able for small to mid-sized businesses or even individual departments within large organizations.

Full-scale GenAISys
If you’re working in a team of experts within an organization that has a large budget and advanced

infrastructure, this category is for you. Your team can build a full-scale GenAISys that begins to

approach the capabilities of ChatGPT-grade platforms.

Key characteristics
•	 A full-blown AI controller that manages and orchestrates complex automated workflows,

including RAG, instruction scenarios, multimodal functionality, and real-time data

•	 Requires significant computing resources and highly skilled development teams

 Think of the GenAISys we’re building in this book as an alpha version—a template

that can be cloned, configured, and deployed anywhere in the organization as often

as needed.

Chapter 1 19

Use case examples
•	 GenAISys is already present in healthcare to assist with patient diagnosis and disease

prevention. The Institut Curie in Paris, for example, has a very advanced AI research team:

https://institut-curie.org/.

•	 Many large organizations have begun implementing GenAISys for fraud detection, weather

predictions, and legal expertise.

You can join one of these large organizations that have the resources to build a sustainable Ge-

nAISys, whether it be on a cloud platform, local servers, or both.

The three categories—hybrid, small scale, and full scale—offer distinct paths for building a Ge-

nAISys, depending on your organization’s goals, budget, and technical capabilities. In this book,

we’ll explore the critical components that make up a GenAISys. By the end, you’ll be equipped to

contribute to any of these categories and offer realistic, technically grounded recommendations

for the projects you work on.

Let’s now lift the hood and begin building contextual awareness and memory retention in code.

Contextual awareness and memory retention
In this section, we’ll begin implementing simulations of contextual awareness and memory re-

tention in Python to illustrate the concepts introduced in the Building the memory of a GenAISys

section. The goal is to demonstrate practical ways to manage context and memory—two features

that are becoming increasingly critical as generative AI platforms evolve.

Open the Contextual_Awareness_and_Memory_Retention.ipynb file located in the chapter01

folder of the GitHub repository (https://github.com/Denis2054/Building-Business-Ready-

Generative-AI-Systems/tree/main). You’ll see that the notebook is divided into five main

sections:

•	 Setting up the environment, building reusable functions, and storing them in the commons

directory of the repository, so we can reuse them when necessary throughout the book

•	 Stateless and memoryless session with semantic and episodic memory

•	 Short-term memory session for context awareness during a session

•	 Long-term memory across multiple sessions for context retention across different ses-

sions

•	 Long-term memory of multiple cross-topic sessions, expanding long-term memory

over formerly separate sessions

https://institut-curie.org/
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main

Defining a Business-Ready Generative AI System20

The goal is to illustrate each type of memory in an explicit process. These examples are inten-

tionally kept manual for now, but they will be automated and managed by the AI controller we

will begin to build in the next chapter.

The first step is to install the environment.

Setting up the environment
We will need a commons directory for our GenAISys project. This directory will contain the main

modules and libraries needed across all notebooks in this book’s GitHub repository. The moti-

vation is to focus on designing the system for maintenance and support. As such, by grouping

the main modules and libraries in one directory, we can zero in on a resource that requires our

attention instead of repeating the setup steps in every notebook. Furthermore, this section will

serve as a reference point for all the notebooks in this book’s GitHub repository. We’ll only de-

scribe the downloading of each resource once and then reuse them throughout the book to build

our educational GenAISys.

Thus, we can download the notebook resources from the commons directory and install the re-

quirements.

The first step is to download grequests.py, a utility script we will use throughout the book. It

contains a function to download the files we need directly from GitHub:

!curl -L https://raw.githubusercontent.com/Denis2054/Building-Business-
Ready-Generative-AI-Systems/master/commons/grequests.py --output
grequests.py

 Due to the probabilistic nature of generative models, you may observe different

outputs for the same prompt across runs. Make sure to run the entire notebook in

a single session, as memory retention in this notebook is explicit in different cells.

In Chapter 2, this functionality will become persistent and fully managed by the AI

controller

Chapter 1 21

The goal of this script is to download a file from any directory of the repository by calling the

download function from grequests:

import sys

import subprocess

from grequests import download

download([directory],[file])

This function uses a curl command to download files from a specified directory and filename. It

also includes basic error handling in case of command execution failures.

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book.

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Defining a Business-Ready Generative AI System22

The code begins by importing subprocess to handle paths and commands. The download function

contains two parameters:

def download(directory, filename):

•	 directory: The subdirectory of the GitHub repository where the file is stored

•	 filename: The name of the file to download

The base URL for the GitHub repository is then defined, pointing to the raw files we will need:

base_url = 'https://raw.githubusercontent.com/Denis2054/Building-Business-
Ready-Generative-AI-Systems/main/'

We now need to define the file’s full URL with the directory and filename parameters:

file_url = f"{base_url}{directory}/{filename}"

The function now defines the curl command:

curl_command = f'curl -o {filename} {file_url}'

Finally, the download command is executed:

subprocess.run(curl_command, check=True, shell=True)

•	 check=True activates an exception if the curl command fails

•	 shell=True runs the command through the shell

The try-except block is used to handle errors:

try:

 # Prepare the curl command with the Authorization header

 curl_command = f'curl -o {filename} {file_url}'

 # Execute the curl command

 subprocess.run(curl_command, check=True, shell=True)

 print(f"Downloaded '{filename}' successfully.")

except subprocess.CalledProcessError:

 print(f"Failed to download '{filename}'. Check the URL and your
internet connection")

We now have a standalone download script that we’ll use throughout the book. Let’s go ahead

and download the resources we need for this program.

Chapter 1 23

Downloading OpenAI resources
We need three resources for this notebook:

•	 requirements01.py to install the precise OpenAI version we want

•	 openai_setup.py to initialize the OpenAI API key

•	 openai_api_py contains a reusable function for calling the GPT-4o model, so you don’t

need to rewrite the same code across multiple cells or notebooks

We can download these files with the download() function:

from grequests import download

download("commons","requirements01.py")

download("commons","openai_setup.py")

download("commons","openai_api.py")

The first resource is requirements01.py.

Installing OpenAI
requirements01.py makes sure that a specific version of the OpenAI library is installed to avoid

conflicts with other installed libraries. The code thus uninstalls existing versions, force-installs

the specified version requested, and verifies the result. The function executes the installation

with error handling:

def run_command(command):

 try:

 subprocess.check_call(command)

 except subprocess.CalledProcessError as e:

 print(f"Command failed: {' '.join(command)}\nError: {e}")

 sys.exit(1)

The first step for the function is to uninstall the current OpenAI library, if there is one:

print("Installing 'openai' version 1.57.1...")

run_command([sys.executable, "-m", "pip", "install", "--force-reinstall",
"openai==1.57.1"])

 We will be reusing the same functions throughout the book for standard OpenAI API

calls. You can come back to this section any time you want to revisit the installation

process. Other scenarios will be added to the commons directory when necessary.

Defining a Business-Ready Generative AI System24

The function then installs a specific version of OpenAI:

run_command(

 [

 sys.executable, "-m", "pip", "install",

 "--force-reinstall", "openai==1.57.1"

]

)

Finally, the function verifies that OpenAI is properly installed:

try:

 import openai

 print(f"'openai' version {openai.__version__} is installed.")

except ImportError:

 print("Failed to import the 'openai' library after installation.")

 sys.exit(1)

The output at the end of the function should be as follows:

'openai' version 1.57.1 is installed.

We can now initialize the OpenAI API key.

OpenAI API key initialization
There are two methods to initialize the OpenAI API key in the notebook:

1.	 Using Google Colab secrets: Click on the key icon in the left pane in Google Colab, as

shown in Figure 1.8, then click on Add new secret and add your key with the name of the

key variable you will use in the notebook:

Figure 1.8: Add a new Google secret key

Chapter 1 25

Then, we can use Google’s function to initialize the key by calling it in our openai_setup

function in openai_setup.py:

Import libraries

import openai

import os

from google.colab import userdata

Function to initialize the OpenAI API key

def initialize_openai_api():

Function to initialize the OpenAI API key

def initialize_openai_api():

 # Access the secret by its name

 API_KEY = userdata.get('API_KEY')

 if not API_KEY:

 raise ValueError("API_KEY is not set in userdata!")

 # Set the API key in the environment and OpenAI

 os.environ['OPENAI_API_KEY'] = API_KEY

 openai.api_key = os.getenv("OPENAI_API_KEY")

 print("OpenAI API key initialized successfully.")

This method is activated if google_secrets is set to True:

google_secrets=True

if google_secrets==True:

 import openai_setup

 openai_setup.initialize_openai_api()

•	 Custom secure method: You can also choose a custom method or enter the key in the code

by setting google_secrets to False, uncommenting the following code, and entering

your API key directly, or any method of your choice:

if google_secrets==False: # Uncomment the code and choose any method
you wish to initialize the API_KEY

 import os

 #API_KEY=[YOUR API_KEY]

 #os.environ['OPENAI_API_KEY'] = API_KEY

 #openai.api_key = os.getenv("OPENAI_API_KEY")

 #print("OpenAI API key initialized successfully.")

Defining a Business-Ready Generative AI System26

In both cases, the code will create an environment variable:

os.environ['OPENAI_API_KEY'] = API_KEY

openai.api_key = os.getenv("OPENAI_API_KEY")

The OpenAI API key is initialized. We will now import a custom OpenAI API call.

OpenAI API call
The goal next is to create an OpenAI API call function in openai_api.py that we can import in

two lines:

#Import the function from the custom OpenAI API file

import openai_api

from openai_api import make_openai_api_call

The function is thus built to receive four variables when making the call and display them seam-

lessly:

API function call

response = openai_api.make_openai_api_call(

 uinput,mrole,mcontent,user_role)

print(response)

The parameters in this function are the following:

•	 input: Contains the input (user or system), for example, Where is Hawaii?

•	 mrole: Defines the system’s role, for example, You are a geology expert. or simply
System.

•	 mcontent: Is what we expect the system to be, for example, You are a geology expert.

•	 user_role: Defines the role of the user, for example, user

The first part of the code in the function defines the model we will be using in this notebook and

creates a message object for the API call with the parameters we sent:

def make_openai_api_call(input, mrole,mcontent,user_role):

 # Define parameters

 gmodel = "gpt-4o"

 # Create the messages object

 messages_obj = [

 {

Chapter 1 27

 "role": mrole,

 "content": mcontent

 },

 {

 "role": user_role,

 "content": input

 }

]

We then define the API call parameters in a dictionary for this notebook:

Define all parameters in a dictionary named params:

 params = {

 "temperature": 0,

 "max_tokens": 256,

 "top_p": 1,

 "frequency_penalty": 0,

 "presence_penalty": 0

 }

The dictionary parameters are the following:

•	 temperature: Controls the randomness of a response. 0 will produce deterministic re-

sponses. Higher values (e.g., 0.7) will produce more creative responses.

•	 max_tokens: Limits the maximum number of tokens of a response.

•	 top_p: Produces nucleus sampling. It controls the diversity of a response by sampling

from the top tokens with a cumulative probability of 1.

•	 frequency_penalty: Reduces the repetition of tokens to avoid redundancies. 0 will apply

no penalty, and 2 a strong penalty. In this case, 0 is sufficient because of the high perfor-

mance of the OpenAI model.

•	 presence_penalty: Encourages new content by penalizing existing content to avoid re-

dundancies. It applies to the same values as for the frequency penalty. In this case, due to

the high performance of the OpenAI model, it doesn’t require this control.

We then initialize the OpenAI client to create an instance for the API calls:

 client = OpenAI()

Defining a Business-Ready Generative AI System28

Finally, we make the API call by sending the model, the message object, and the unpacked pa-

rameters:

 # Make the API call

 response = client.chat.completions.create(

 model=gmodel,

 messages=messages_obj,

 **params # Unpack the parameters dictionary

)

The function ends by returning the content of the API’s response that we need:

 #Return the response

 return response.choices[0].message.content

This function will help us focus on the GenAISys architecture without having to overload the

notebook with repetitive libraries and functions.

In the notebook, we have the following:

•	 The program provides the input, roles, and message content to the function

•	 messages_obj contains the conversation history

•	 The parameters for the API’s behavior are defined in the params dictionary

•	 An API call is made to the OpenAI model using the OpenAI client

•	 The function returns only the AI’s response content

Let’s now build and run a stateless and memoryless session.

1. Stateless and memoryless session
A stateless and memoryless session is useful if we only want a single and temporary exchange

with no stored information between requests. The examples in this section are both stateless

and memoryless:

•	 Stateless indicates that each request will be processed independently

•	 Memoryless means that there is no mechanism to remember past exchanges

 A GenAISys will contain many components—including a generative model. You can

choose the one that fits your project. In this book, the models are used for educational

purposes only, not as endorsements or recommendations.

Chapter 1 29

Let’s begin with a semantic query.

Semantic query
This request expects a purely semantic, factual response:

uinput = "Hawai is on a geological volcano system. Explain:"

mrole = "system"

mcontent = "You are an expert in geology."

user_role = "user"

Now, we call the OpenAI API function:

Function call

response = openai_api.make_openai_api_call(

 uinput,mrole,mcontent,user_role)

print(response)

As you can see, the response is purely semantic:

Hawaii is located on a volcanic hotspot in the central Pacific Ocean,
which is responsible for the formation of the Hawaiian Islands. This
hotspot is a region where magma from deep within the Earth's mantle rises
to the surface, creating volcanic activity…

The next query is episodic.

Episodic query with a semantic undertone
The query in this example is episodic and draws on personal experience. However, there is a se-

mantic undertone because of the description of Hawaii. Here’s the message, which is rather poetic:

API message

uinput = "I vividly remember my family's move to Hawaii in the 1970s,
how they embraced the warmth of its gentle breezes, the joy of finding a
steady job, and the serene beauty that surrounded them. Sum this up in one
nice sentence from a personal perspective:"

mrole = "system"

mcontent = "You are an expert in geology."

user_role = "user"

Defining a Business-Ready Generative AI System30

We could insert external information before the function call if necessary. For example, we could

add some information from another source, such as a text message received that day from a

family member:

text_message='I agree, we had a wonderful time there.'

uninput=text_message+uinput

text_message="Hi, I agree, we had a wonderful time there."

Now, we call the function:

Call the function

response = openai_api.make_openai_api_call(

 uinput,mrole,mcontent,user_role)

print(response)

We see that the response is mostly episodic with some semantic information:

Moving to Hawaii in the 1970s was a transformative experience for my
family, as they found joy in the island's gentle breezes, the security of
steady employment, and the serene beauty that enveloped their new home.

Stateless and memoryless verification
We added no memory retention functionality earlier, making the dialogue stateless. Let’s check:

API message

uinput = "What question did I just ask you?"

mrole = "system"

mcontent = "You already have this information"

user_role = "user"

When we call the function, our dialogue will be forgotten:

API function call

response = openai_api.make_openai_api_call(

 uinput,mrole,mcontent,user_role

)

print(response)

mcontent is reused from the semantic query example (“You are an expert in geology”),

but in this case, it doesn’t significantly influence the response. Since the user input

is highly personal and narrative-driven, the system prompt plays a minimal role.

Chapter 1 31

The output confirms that the session is memoryless:

I'm sorry, but I can't recall previous interactions or questions. Could
you please repeat your question?

The API call is stateless because the OpenAI API does not retain memory between requests. If we

were using ChatGPT directly, the exchanges would be memorized within that session. This has

a critical impact on implementation. It means we have to build our own memory mechanisms to

give GenAISys stateful behavior. Let’s start with the first layer: short-term memory.

2. Short-term memory session
The goal of this section is to emulate a short-term memory session using a two-step process:

1.	 First, we initiate a session that goes from user input to a response:

User input => Generative model API call => Response

To achieve this first step, we run the session up to the response:

uinput = "Hawai is on a geological volcano system. Explain:"

mrole = "system"

mcontent = "You are an expert in geology."

user_role = "user"

response = openai_api.make_openai_api_call(

 uinput,mrole,mcontent,user_role)

print(response)

The response’s output is stored in response:

"Hawaii is part of a volcanic system known as a hotspot, which is
a region of the Earth's mantle where heat rises as a thermal plume
from deep within the Earth. This hotspot is responsible for the
formation of the Hawaiian Islands. Here's how the process works:…"

2.	 The next step is to feed the previous interaction into the next prompt, along with a fol-

low-up question:

•	 Explain the situation: The current dialog session is:

•	 Add the user’s initial input: Hawai is on a geological volcano system.
Explain:

•	 Add the response we obtained in the previous call

•	 Add the user’s new input: Sum up your previous response in a short sentence
in a maximum of 20 words.

Defining a Business-Ready Generative AI System32

The goal here is to compress the session log. We won’t always need to compress dialogues,

but in longer sessions, large context windows can pile up quickly. This technique helps

keep the token count low, which matters for both cost and performance. In this particular

case, we’re only managing one response, so we could keep the entire interaction in memory

if we wanted to. Still, this example introduces a useful habit for scaling up.

Once the prompt is assembled:

•	 Call the API function

•	 Display the response

The scenario is illustrated in the code:

ninput = "Sum up your previous response in a short sentence in a
maximum of 20 words."

uinput = (

 "The current dialog session is: " +

 uinput +

 response +

 ninput

)

response = openai_api.make_openai_api_call(

 uinput, mrole, mcontent, user_role

)

print("New response:", "\n\n", uinput, "\n", response)

The output provides a nice, short summary of the dialogue:

New response: Hawaii's islands form from volcanic activity over a
stationary hotspot beneath the moving Pacific Plate.

This functionality wasn’t strictly necessary here, but it sets us up for the longer dialogues we’ll

encounter later in the book. Next, let’s build a long-term simulation of multiple sessions.

 Keep in mind: Since the session is still in-memory only, the conversation would

be lost if the notebook disconnects. Nothing is stored on disk or in a database yet.

Chapter 1 33

3. Long-term memory of multiple sessions
In this section, we’re simulating long-term memory by continuing a conversation from an earlier

session. The difference here is that we’re not just remembering a dialogue from a single session—

we’re reusing content from a past session to extend the conversation. At this point, the term

“session” takes on a broader meaning. In a traditional copilot scenario, one user interacts with

one model in one self-contained session. Here, we’re blending sessions and supporting multiple

sub-sessions. Multiple users can interact with the model in a shared environment, effectively

creating a single global session with branching memory threads. Think of the model as a guest

in an ongoing Zoom or Teams meeting. You can ask the AI guest to participate or stay quiet—and

when it joins, it may need a recap.

To avoid repeating the first steps of the past conversation, we’re reusing the content from the

short-term memory session we just ran. Let’s assume the previous session is over, but we still

want to continue from where we left off:

session01=response

print(session01)

The output contains the final response from our short-term memory session:

Hawaii's islands form from volcanic activity over a stationary hotspot
beneath the moving Pacific Plate.

The process in this section will build on the previous session, similar to how you’d revisit a con-

versation with an online copilot after some time away:

Save previous session => Load previous session => Add it to the new session’s scenario

Let’s first test whether the API remembers anything on its own:

uinput="Is it safe to go there on vacation"

response = openai_api.make_openai_api_call(

 uinput,mrole,mcontent,user_role

)

print(response)

The output shows that it forgot the conversation we were in:

I'm sorry, but I need more information to provide a helpful response.
Could you specify the location you're considering for your vacation? …

Defining a Business-Ready Generative AI System34

The API forgot the previous call because stateless APIs don’t retain past dialogue. It’s up to us to

decide what to include in the prompt. We have a few choices:

•	 Do we want to remember everything with a large consumption of tokens?

•	 Do we want to summarize parts or all of the previous conversations?

In a real GenAISys, when an input triggers a request, the AI controller decides which is the best

strategy to apply to a task. The code now associates the previous session’s context and memory

with a new request:

ninput = "Let's continue our dialog."

uinput=ninput + session01 + "Would it be safe to go there on vacation?"

response = openai_api.make_openai_api_call(

 uinput,mrole,mcontent,user_role

)

print("Dialog:", uinput,"\n")

print("Response:", response)

The response shows that the system now remembers the past session and has enough information

to provide an acceptable output:

Response: Hawaii is generally considered a safe destination for vacation,
despite its volcanic activity. The Hawaiian Islands are formed by a
hotspot beneath the Pacific Plate, which creates volcanoes as the plate
moves over it. While volcanic activity is a natural and ongoing process
in Hawaii, it is closely monitored by the United States Geological Survey
(USGS) and other agencies…

Let’s now build a long-term simulation of multiple sessions across different topics.

4. Long-term memory of multiple cross-topic sessions
This section illustrates how to merge two separate sessions into one. This isn’t something standard

ChatGPT-like platforms offer. Typically, when we start a new topic, the copilot only remembers

what’s happened in the current session. But in a corporate environment, we may need more

flexibility—especially when multiple users are collaborating. In such cases, the AI controller

can be configured to allow groups of users to view and merge sessions generated by others in

the same group.

Chapter 1 35

Let’s say we want to sum up two separate conversations—one about Hawaii’s volcanic systems,

and another about organizing a geological field trip to Arizona. We begin by saving the previous

long-term memory session:

session02=uinput + response

print(session02)

Then we can start a separate multi-user sub-session from another location, Arizona:

ninput ="I would like to organize a geological visit in Arizona."

uinput=ninput+"Where should I start?"

response = openai_api.make_openai_api_call(

 uinput,mrole,mcontent,user_role

)

#print("Dialog:", uinput,"\n")

We now expect a response on Arizona, leaving Hawaii out:

Response: Organizing a geological visit in Arizona is a fantastic idea, as
the state is rich in diverse geological features. Here's a step-by-step
guide to help you plan your trip:…

The response is acceptable. Now, let’s simulate long-term memory across multiple topics by

combining both sessions and prompting the system to summarize them:

session02=response

ninput="Sum up this dialog in a short paragraph:"

uinput=ninput+ session01 + session02

response = openai_api.make_openai_api_call(

 uinput,mrole,mcontent,user_role

)

#print("Dialog:", uinput,"\n")#optional

print("Response:", response)

The system’s output shows that the long-term memory of the system is effective. We see that

the first part is about Hawaii:

Response: The dialog begins by explaining the formation of Hawaii's
volcanic islands as the Pacific Plate moves over a stationary hotspot,
leading to active volcanoes like Kilauea….

Defining a Business-Ready Generative AI System36

Then the response continues to the part about Arizona:

It then transitions to planning a geological visit to Arizona, emphasizing
the state's diverse geological features. The guide recommends researching
key sites such as the Grand Canyon…

We’ve now covered the core memory modes of GenAISys—from stateless and short-term memory

to multi-user, multi-topic long-term memory. Let’s now summarize the chapter’s journey and

move to the next level!

Summary
A business-ready GenAISys offers functionality on par with ChatGPT-like platforms. It brings

together generative AI models, agentic features, RAG, memory retention, and a range of ML and

non-AI functions—all coordinated by an AI controller. Unlike traditional pipelines, the controller

doesn’t follow a fixed sequence of steps. Instead, it orchestrates tasks dynamically, adapting to

the context.

A GenAISys typically runs on a model such as GPT-4o—or whichever model best fits your use case.

But as we’ve seen, just having access to an API isn’t enough. Contextual awareness and memory

retention are essential. While ChatGPT-like tools offer these features by default, we have to build

them ourselves when creating custom systems.

We explored four types of memory: memoryless, short-term, long-term, and cross-topic. We also

distinguished semantic memory (facts) from episodic memory (personal, time-stamped informa-

tion). Context awareness depends heavily on memory—but context windows have limits. Even

if we increase the window size, models can still miss the nuance in complex tasks. That’s where

advanced RAG comes in—breaking down content into smaller chunks, embedding them, and

storing them in vector stores such as Pinecone. This expands what the system can “remember”

and use for reasoning.

We also saw that no matter how advanced GenAISys becomes, it can’t function without human

expertise. From design to deployment, maintenance, and iteration, people remain critical through-

out the system’s life cycle. We then outlined three real-world implementation models based on

available resources and goals: hybrid systems that leverage existing AI platforms, small-scale

systems for targeted business needs, and full-scale systems built for ChatGPT-grade performance.

Finally, we got hands-on—building a series of memory simulation modules in Python using

GPT-4o. These examples laid the groundwork for what comes next: the AI controller that will

manage memory, context, and orchestration across your GenAISys. We are now ready to build a

GenAISys AI controller!

Chapter 1 37

Questions
1.	 Is an API generative AI model such as GPT an AI controller? (Yes or No)

2.	 Does a memoryless session remember the last exchange(s)? (Yes or No)

3.	 Is RAG used to optimize context windows? (Yes or No)

4.	 Are human roles important for the entire life cycle of a GenAISys? (Yes or No)

5.	 Can an AI controller run tasks dynamically? (Yes or No)

6.	 Is a small-scale GenAISys built with a limited number of key features? (Yes or No)

7.	 Does a full-scale ChatGPT-like system require huge resources? (Yes or No)

8.	 Is long-term memory necessary across multiple sessions? (Yes or No)

9.	 Do vector stores such as Pinecone support knowledge and AI controller functions? (Yes

or No)

10.	 Can a GenAISys function without contextual awareness? (Yes or No)

References
•	 Tomczak, J. M. (2024). Generative AI Systems: A Systems-based Perspective on Generative AI.

https://arxiv.org/pdf/2407.11001

•	 Zewe, A. (2023, November 9). Explained: Generative AI. MIT News. Retrieved from https://
news.mit.edu/2023/explained-generative-ai-1109

•	 OpenAI models: https://platform.openai.com/docs/models

•	 Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P.

(2021). On the Opportunities and Risks of Foundation Models. arXiv preprint arXiv:2108.07258.

Retrieved from https://arxiv.org/abs/2108.07258

Further reading
•	 Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2023). Generative AI. Business &

Information Systems Engineering. https://doi.org/10.1007/s12599-023-00834-7

•	 Eloundou et al. (2023). GPTs are GPTs: An Early Look at the Labor Market Impact Potential

of Large Language Models. https://arxiv.org/abs/2303.10130

https://arxiv.org/pdf/2407.11001
https://arxiv.org/pdf/2407.11001

https://news.mit.edu/2023/explained-generative-ai-1109
https://news.mit.edu/2023/explained-generative-ai-1109
https://news.mit.edu/2023/explained-generative-ai-1109

https://platform.openai.com/docs/models
https://platform.openai.com/docs/models

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258

https://doi.org/10.1007/s12599-023-00834-7

https://arxiv.org/abs/2303.10130

Defining a Business-Ready Generative AI System38

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

2
Building the Generative AI
Controller

A generative AI system (GenAISys)’s controller requires two key components: a conversational

agent and an orchestrator. The conversational agent—powered by a generative AI model—in-

teracts with human users and system processes. The orchestrator, on the other hand, is a set of

generative AI and non-AI functions, such as managing user roles, content generation, activating

machine learning algorithms, and running classical queries. We need both to build a functional

GenAISys.

If we examine this architecture closely, we’ll see that software orchestrators and user interfaces

date back to the first computers. Any operating system, with even basic functionality, has orches-

trators that trigger disk space alerts, memory usage, and hundreds of other functions. Today’s

user interfaces are intuitive and have event-driven functionality, but at a high level, the under-

lying architecture of a GenAISys still echoes decades of software design principles. So, what sets

a classical software controller apart from a GenAISys controller?

We can sum up the difference in one word: adaptability. In a classical software controller, a se-

quence of tasks is more or less hardcoded. But in a GenAISys, the user interface is a conversational

AI agent that is flexible, and the generative AI model behind it is pre-trained to respond to a wide

range of requests with no additional coding. Furthermore, the orchestrator isn’t locked into static

flows either; it can modify the tasks it triggers based on the user (human or system) prompts.

Building the Generative AI Controller40

In this chapter, we’ll take a hands-on approach to building a custom GenAISys based on the

architecture of a GenAISys defined in the previous chapter. We’ll begin by defining the structure

of our AI controller in Python, breaking it into two parts—the conversational agent and the

orchestrator—and exploring how the two interact. Then, we’ll build the conversational agent

using GPT-4o. We’ll automate the contextual awareness and memory retention features from

Chapter 1. Our system will support both short-term and long-term memory, as well as multi-user

and cross-session capabilities—pushing it beyond what standard copilots typically offer.

Finally, we will build the structure of an AI controller to interpret user input and trigger a response

scenario. The response will be a sentiment analysis or a semantic (hard science) analysis, de-

pending on the context of what the AI controller will analyze and manage. Our custom GenAISys

will lay the groundwork for domain-specific RAG, something a standard ChatGPT-grade system

can’t offer when you’re working with large volumes of data, especially in cases of daily dataset

updates, such as the daily sales of a product or service. By the end of this chapter, you’ll know how

to build the foundations of a GenAISys AI controller that we will enhance throughout the book.

To sum up, this chapter covers the following topics:

•	 Architecture of the AI controller

•	 Architecture of an AI conversational agent and its workflow

•	 Implementing the storage of short- and long-term memory sessions in code

•	 Architecture of an AI orchestrator and the intent functionality

•	 Creating a GenAI scenario library containing instruction scenarios

•	 Processing an input with vector search to orchestrate instructions

•	 Processing an input with a GPT-4o analysis to orchestrate instructions

•	 Selecting and executing tasks based on the input with the multipurpose orchestrator

Let’s begin by defining the architecture of the AI controller.

Architecture of the AI controller
We’ll continue to implement the architecture of GenAISys as we’ve defined in Figure 1.1 from Chap-

ter 1. Figure 2.1, on the other hand, takes us further into the underlying functions of a GenAISys.

Chapter 2 41

Figure 2.1: Defining the functions to build

We established in the previous chapter that human roles are essential, and the preceding figure

acknowledges that fact. We are the core of a GenAISys, no matter how advanced the building

blocks (models or frameworks) are. Our first task is designing using our human creativity to find

effective ways to implement a GenAISys controller. GenAISys needs human creativity, judgment,

and technical decision-making. Under the hood of seamless copilots such as ChatGPT, Gemini,

and Microsoft Copilot lie intricate layers of AI and non-AI logic. If we want to build our own

ChatGPT-like system, we humans need to do the heavy lifting!

We will build two separate programs:

•	 A conversational agent implemented with GPT-4o, which supports both short- and long-

term memory. This will help us enforce contextual awareness across multiple exchanges.

It aligns with function F3 in Figure 2.1.

•	 An AI controller orchestrator that will also use GPT-4o to analyze the user input, search

a library of instructions, augment the input with the appropriate instructions, and run

the function(s) in the instructions.

In this chapter, we’ll focus on two scenarios: sentiment analysis and semantic (hard science)

analysis, which correspond to functions F1 and F2 in our architecture. Functions F4 and F5 will

be added in Chapter 3.

Building the Generative AI Controller42

Although these examples are built for OpenAI’s API, the logic is model-agnostic. Once you under-

stand how it works, you can adapt the code to use any LLM—such as Meta’s Llama, xAI’s Grok,

Google’s Gemini, or Cohere.

Once we’ve built the conversational agent and controller orchestrator programs separately, we

will merge them into a unified intelligence AI controller, as shown in Figure 2.2.

Figure 2.2: Next steps—integrating the AI controller functions through a Pinecone vector store

For now, we need to focus on building each component individually so we can fully understand

their behavior. Once that foundation is in place, in Chapter 3, we will merge them through a

Pinecone vector store. Let’s now dive straight down into code and begin developing the conver-

sational agent.

Conversational AI agent
Our two primary goals for this section are to build a conversational AI agent with the following:

•	 Short-term memory retention for a full ChatGPT-like conversational loop. The user

and agent can have as many exchanges as they wish; there is no limit to the number of

interactions between them.

•	 Long-term memory retention across multiple users and sessions. We’ll store in-memory

sessions and persist them to a memory storage (in this case, a text file). This will enable

multi-user contextual awareness for users such as John, Myriam, and Bob. Our conver-

sational agent will move beyond classic one-to-one ChatGPT-style dialogues toward a

custom GenAISys capable of handling multi-session, multi-user interactions.

Chapter 2 43

To get started, open Conversational_AI_Agent.ipynb in this chapter’s GitHub directory

(https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/

main). This notebook will guide you through the environment setup.

Setting up the environment
We’ll reuse the setup process from the previous chapter. If you need a refresher, feel free to revisit

that section. Start by installing OpenAI and downloading the required files:

!curl -L https://raw.githubusercontent.com/Denis2054/Building-Business-
Ready-Generative-AI-Systems/master/commons/grequests.py --output
grequests.py

from grequests import download

download("commons","requirements01.py")

download("commons","openai_setup.py")

download("commons","openai_api.py")

We’ll also need to download two additional functions to build our conversational agent:

•	 download("commons","conversational_agent.py"): This contains the functions to

manage a full-turn conversation loop and memorize the dialogue.

•	 download("commons", "processing_conversations.py"): This contains tools to load,

display, and cleanse past conversations to increase the memory span of the conversational

agent across several sessions and users. This custom multisession, multi-user feature goes

beyond the scope of standard ChatGPT-like copilots.

Let’s now move on to implementing the functions in conversational_agent.py, which we’ll call

throughout our sessions with the conversational AI agent.

Conversational AI agent workflow
The conversation AI agent contains two main parts:

•	 Starting the initial conversation to initiate a dialogue with the AI agent

•	 Running the full-turn conversation loop to continue as many in-memory exchanges as a

user wishes with the AI agent. At the end of each session, the dialog is saved so it can be

resumed later—by the same user or another.

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main

Building the Generative AI Controller44

Starting the initial conversation
The initial conversation marks the entry point for a new session. It’s handled by the AI controller

and illustrated in Figure 2.3.

Figure 2.3: The initial conversation controller

We will go through each step of the initial conversation with the generative AI model to under-

stand in detail how a small-scale ChatGPT-like conversational agent works. The 10-step process

begins with Start.

Chapter 2 45

1. Starting the conversation
The program begins at this entry point through the run_conversational_agent function in

openai_api.py, which will be called in the notebook by conversational_agent and its param-

eters:

Start the conversational agent

def run_conversational_agent(

 uinput, mrole, mcontent, user_role, user_name

):

 conversational_agent(uinput, mrole, mcontent, user_role, user_name)

The parameters the conversational agent will process in this case are the following:

•	 uinput: Contains the input (user or system), for example, Where is Hawaii?.

•	 mrole: Defines the role of the message. It can be user or system. You can also assign other

roles that the API will interpret, such as defining the AI’s persona, for example, You are

a geology expert.

•	 mcontent: Is what we expect the system to be, for example, You are a geology expert.

•	 user_role: Defines the role of the user, for example, user.

•	 user_name: The name of the user, for example, John.

2–3. Initializing API variables and the messages object
messages_obj is initialized with the parameters of the conversation described in the previous

step, Starting the conversation:

messages_obj = [{"role": mrole, "content": mcontent}]

messages_obj is focusing on the memory of the system. This object will be appended as long as

the session lasts with the exchanges with the GPT-4o model. It will be used to log conversations

between sessions. The first message contains the role and content for setting up the agent’s context.

4. Printing a welcome message
The system is now ready to interact with users. The agent first displays a welcome message and

explains how to exit the system once the conversation is over:

print("Welcome to the conversational agent! Type 'q' or 'quit' to end the
conversation.")

Building the Generative AI Controller46

5. Handling the initial user input
The user’s initial input is added to messages_obj to provide the agent with memory and provide

the direction the agent is expected to follow. The initial user input will be sent from the conver-

sational agent:

if initial_user_input:

 print(f"{user_name}: {initial_user_input}")

 messages_obj.append(

 {"role": user_role, "content": initial_user_input}

)

6. Cleansing the initial conversation log
messages_obj holds the conversation’s history in a structured format. For certain operations

within our application, such as generating a simplified display, creating a consolidated log entry,

or preparing input for a text-based function, we need to convert this structured log into a single,

continuous string. This makes sure that the data is in the correct format for these specific tasks

and helps resolve any potential punctuation or formatting quirks that might arise when com-

bining the different message parts:

conversation_string = cleanse_conversation_log(messages_obj)

The cleansing function cleans the conversation and returns a string:

def cleanse_conversation_log(messages_obj):

 conversation_str = " ".join(

 [f"{entry['role']}: {entry['content']}" for entry in messages_obj]

)

 # Remove problematic punctuations

 return re.sub(r"[^\w\s,.?!:]", "", conversation_str)

Chapter 2 47

7. Making the initial API call
The cleansed conversation string is sent to the API for processing. The API provides a response

based on the last input and the conversation history. The system now has a memory:

agent_response = make_openai_api_call(

 input=conversation_string,

 mrole=mrole,

 mcontent=mcontent,

 user_role=user_role

)

8. Appending the initial API response
The assistant’s response from the API is processed and appended to messages_obj. We are con-

tinuing to increase the system’s memory and, thus, its contextual awareness:

messages_obj.append({"role": "assistant", "content": agent_response})

9. Displaying the initial assistant’s response
The system’s response is displayed for the user to analyze and decide whether to continue or exit

the session:

print(f"Agent: {agent_response}")

10. Starting the conversation loop
The system now enters the conversation loop, where multiple dialogue turns can take place until

the user decides to exit the session:

while True:

 user_input = input(f"{user_name}: ")

 if user_input.lower() in ["q", "quit"]:

 print("Exiting the conversation. Goodbye!")

 break

We are now ready to begin a full-turn conversation loop.

Building the Generative AI Controller48

The full-turn conversation loop
The initial conversation is now initialized. We will enter the full-turn conversation loop starting

from step 11 onward, as illustrated in Figure 2.4.

Figure 2.4: The conversation loop starting from step 11

11. Prompting for the user input
The conversation continues the initial dialogue and is memorized through the messages object.

The user prompt triggers a full-turn conversation loop. The first step is to enter the user’s name.

This custom takes us beyond the standard ChatGPT-like conversational agents that are limited

to one user per session. We are initializing a multi-user conversation:

user_input = input(f"{user_name}: ")

Chapter 2 49

12. Checking the Exit condition
If q or quit is entered, the session is ended:

if user_input.lower() in ["q", "quit"]:

 print("Exiting the conversation. Goodbye!")

 break

13. Appending the user input to the messages object
The system is now equipped with a memory of a full-turn conversation loop. It uses the generic

API format we defined. The user’s input is appended to messages_obj:

messages_obj.append({"role": user_role, "content": user_input})

14. Cleansing the conversation log (loop)
The updated messages_obj is cleansed to make sure it complies with the API calls, as in step 6,

Cleansing the initial conversation log:

conversation_string = cleanse_conversation_log(messages_obj)

15. Making the API call in the conversation loop
In this full-turn conversation loop, the whole conversation is sent to the API. The API will thus

return a response based on the context of the whole conversation and the new input:

agent_response = make_openai_api_call(

 input=conversation_string,

 mrole=mrole,

 mcontent=mcontent,

 user_role=user_role

)

16. Appending the API response in the conversation loop
The API’s response is appended to messages_obj at each conversation turn:

messages_obj.append({"role": "assistant", "content": agent_response})

17. Displaying the assistant’s response
The API response is displayed at each conversation turn in the loop:

print(f"Agent: {agent_response}")

Building the Generative AI Controller50

18. Exiting and saving the conversation log
When a user exits the loop, the conversation is saved. This feature will replicate a ChatGPT-like

platform that can save dialogue between two sessions with the same user. However, as we will

see in our implementation of a conversational agent in the Running the conversational agent section,

our program will be able to save a multi-user session in a conversation between team members:

with open("conversation_log.txt", "w") as log_file:

 log_file.write("\n".join([f"{(user_name if entry['role'] == 'user'
else entry['role'])}: {entry['content']}" for entry in messages_obj]))

19. End
The conversational agent terminates the session after memorizing the conversation:

print("Conversation saved to 'conversation_log.txt'.")

We have explored the conversational agent’s functionality.

Now, let’s move on to the AI conversational agent program that represents an AI controller.

Running the conversational AI agent
The main program, Conversational_AI_Agent.ipynb, calls the necessary functions from

conversational_agent.py to handle AI interactions. We will be running a conversation through

three user sessions with this scenario:

1.	 John begins with a short-term memory session with the conversational AI agent.

2.	 John’s conversation will be saved in a log file when the session is over.

3.	 Myriam resumes the session using that same log file.

4.	 Myriam’s conversation will be saved in the same log file as John’s when the session is over.

5.	 Bob will pick up where John and Myriam left off.

6.	 Bob’s conversation will be saved in the same log file as John’s and Myriam’s when the

session is over.

All three users interact in successive sessions. In Chapter 3, we’ll go further by grouping users

through a Pinecone vector store so that multiple users can participate together in a session in

real time. For the moment, let’s walk through this multi-user setup step by step and see how the

conversational AI agent handles these sessions. Let’s begin with the first step: John’s short-term

memory session.

Chapter 2 51

Short-term memory session
The session begins with the parameters described in step 1, Starting the conversation, of the con-

versational agent:

uinput = "Hawai is on a geological volcano system. Explain:"

mrole = "system"

mcontent = "You are an expert in geology."

user_role = "user"

We are also adding the name of the user like in a ChatGPT-like session:

user_name = "John"

This simple addition—user_name—is what takes our GenAISys beyond standard ChatGPT-like

platforms. It allows us to associate memory with specific users and expand into multi-user con-

versations within a single system.

We will now import the first function, the OpenAI API functionality, to make a request to OpenAI’s

API, as described in Chapter 1:

from openai_api import make_openai_api_call

The program now imports the second function, the conversational agent, and runs it as described

earlier in this section:

from conversational_agent import run_conversational_agent

run_conversational_agent(uinput, mrole, mcontent, user_role,user_name)

Let’s go through each step of the dialog implemented with our two functions. The agent first

welcomes us:

Welcome to the conversational agent! Type 'q' or 'quit' to end the
conversation.

John, the first user, asks for a geological explanation about Hawaii:

John: Hawai is on a geological volcano system. Explain:

The agent provides a satisfactory answer:

Agent: Hawaii is part of a geological volcanic system known as a
"hotspot"…

Building the Generative AI Controller52

John now asks about surfing “there”:

John: Can we surf there?

Thanks to the memory we built into the agent, it now has contextual awareness through memory

retention. The agent correctly responds about surfing in Hawaii:

Agent: Yes, you can definitely surf in Hawaii! The Hawaiian Islands are
renowned …

John now asks about the best places to stay without mentioning Hawaii:

John: Where are the best places to stay?

The agent answers correctly using contextual awareness:

Agent: Hawaii offers a wide range of accommodations …

John then quits the session:

John: quit

The agent exits the conversation and saves the dialogue in a conversation log:

Agent:Exiting the conversation. Goodbye!

Conversation saved to 'conversation_log.txt'.

The short-term session ends, but thanks to memory retention via conversation_log.txt, we

can easily pick up from where John left off. We can thus continue the dialogue immediately or

at a later time, leveraging memory retention through the conversation_log.txt file that was

automatically generated.

Long-term memory session
The short-term session is saved. We have three options:

•	 Stop the program now. In this case, conversation_log.txt will only contain John’s ses-

sion, which can be continued or not.

•	 Decide to initialize a separate conversation_log.txt for the next user, Myriam.

•	 Continue with a multi-user session by loading John’s conversation into Myriam’s initial

dialog context.

The program in this chapter chooses to continue a multi-session, multi-user scenario.

Chapter 2 53

The first step to continue the conversation with John is to load and display the conversation log

using the function in processing_conversations.py that we downloaded in the Setting up the

environment section. We now import and run the function that we need to load and display the

conversation log:

from processing_conversations import load_and_display_conversation_log

conversation_log = load_and_display_conversation_log()

The function is a standard IPython process using HTML functionality that reads and displays

the conversation:

from IPython.core.display import display, HTML

import re

Step 1: Load and Display Conversation Log

def load_and_display_conversation_log():

 try:

 with open("conversation_log.txt", "r") as log_file:

 conversation_log = log_file.readlines()

 # Prepare HTML for display

 html_content = "<h3>Loaded Conversation Log</h3><table
border='1'>"

 for line in conversation_log:

 html_content += f"<tr><td>{line.strip()}</td></tr>"

 html_content += "</table>"

 # Display the HTML

 display(HTML(html_content))

 return conversation_log

 except FileNotFoundError:

 print("Error: conversation_log.txt not found. Ensure it exists in
the current directory.")

 return []

The output displays each participant in the conversation, beginning with the system’s information,

followed by John’s request, and then the GPT-4o assistant’s response at each turn:

system: You are an expert in geology.

John: Hawai is on a geological volcano system. Explain:

assistant: Hawaii is part of a geological volcanic system…

Building the Generative AI Controller54

Before adding the conversation to the context of the next input, we will clean and prepare it. To

achieve this, we successively import cleanse_conversation_log and import initialize_uinput

from processing_conversations.py:

from processing_conversations import cleanse_conversation_log

from processing_conversations import initialize_uinput

Then, we will call the two Python functions that we defined to cleanse and then prepare the new

input:

cleansed_log = cleanse_conversation_log(conversation_log)

nuinput = initialize_uinput(cleansed_log)

The cleanse function removes punctuation and potentially problematic characters:

Step 2: Clean the conversation log by removing punctuations and special
characters

def cleanse_conversation_log(conversation_log):

 cleansed_log = []

 for line in conversation_log:

 # Remove problematic punctuations and special characters

 cleansed_line = re.sub(r"[^\w\s,.?!:]", "", line)

 cleansed_log.append(cleansed_line.strip())

 return " ".join(cleansed_log) # Combine all lines into a single
string

Finally, we initialize the new input:

Step 3: Initialize `uinput` with the cleansed conversation log to
continue the conversation

def initialize_uinput(cleansed_log):

 if cleansed_log:

 print("\nCleansed conversation log for continuation:")

 print(cleansed_log)

 return cleansed_log # Use the cleansed log as the new input

 else:

 print("Error: No data available to initialize `uinput`.")

 return ""

Chapter 2 55

The output confirms that the conversation log has been cleansed:

Cleansed conversation log for continuation:

system: You are an expert in geology…

Then, the output confirms that nuinput contains the conversation log for continuation:

`nuinput` now contains the cleansed version of the conversation log and
can be used

print("\nInitialized `nuinput` for continuation:", nuinput)

Continuing the previous session
We can now continue the conversation that John began with nuinput as the memory retention

variable for contextual awareness. We will add the context, nuinput, to Myriam’s request using

the message variables as before:

ninput = nuinput+ "What about surfing in Long Beach"

mrole = "system"

mcontent = "You are an expert in geology."

user_role = "user"

user_name = "Myriam"

The message call contains two key features:

•	 ninput = nuinput+ [user input], which shows that the AI controller now has a long-

term memory that goes beyond a single session

•	 user_name = "Myriam", which shows the multi-user feature, proving that our custom

small-scale ChatGPT-like AI controller has more flexibility than a standard copilot

The overall process is the same as with John. Myriam asks a question:

Myriam: What about surfing in Long Beach

The agent responds:

Agent:Long Beach, California, offers a different surfing experience
compared to Hawai…

Myriam quits:

Myriam: quit

Building the Generative AI Controller56

The agent confirms that the conversation has ended and is saved to the conversation log:

Agent:Exiting the conversation. Goodbye!

Conversation saved to 'conversation_log.txt'.

The AI controller now has a log of John’s session and Myriam’s continuation of the session. The

controller can take this further and add yet another user to the conversation.

Continuing the long-term multi-user memory
Let’s add Bob to the mix to continue the conversation. First, display the conversation log again:

Run the process

conversation_log = load_and_display_conversation_log()

You’ll see entries for both John and Myriam:

system: You are an expert in geology.

Myriam: system: You are an expert …

The log is then cleansed and prepared for the next turn of the conversation as previously. nuinput

now contains John and Myriam’s sessions:

uinput =nuinput+ "Read the whole dialog then choose the best for geology
research"

mrole = "system"

mcontent = "You are an expert in geology."

user_role = "user"

user_name = "Bob"

Bob is focused on the geological mission, not leisure:

Bob:"Read the whole dialog then choose the best for geology research"

The AI agent provides an accurate response:

Agent: For geology research, the most relevant part of the dialogue is the
explanation of Hawaii's geological volcanic system. This section provides
detailed insights into the Hawaiian hotspot, mantle plumes, volcanic
activity,…

Bob then quits the session:

Bob: quit

Chapter 2 57

The agent exits the conversation and saves it in the conversation log:

Agent:Exiting the conversation. Goodbye!

Conversation saved to 'conversation_log.txt'.

With these three scenarios, we have implemented a conversational agent managed by the AI

controller in a multi-user full-turn conversational loop. Let’s examine the next steps for this

conversational agent.

Next steps
At this point, we have the basic structure of a conversational agent. We need to integrate it into

an AI controller orchestrator. Let’s sum up the work we did for the conversational agent before

beginning to build the AI controller orchestrator.

Figure 2.5: The cycle of a conversational agent loop

As illustrated in the preceding figure, the AI conversation agent does the following:

1.	 The agent processes the input (system or human user).

2.	 The agent responds.

3.	 The memory retention function is activated.

4.	 The conversation is added to the following input as context.

5.	 The user can quit.

Building the Generative AI Controller58

However, the entry/exit point is incomplete. We can enter and exit the conversation but cannot

call functions to orchestrate tasks such as activating sentiment analysis and semantic analysis.

To complete the architecture of the AI controller, we need to begin building the AI controller

orchestrator.

AI controller orchestrator
In this section, we will build the first component of our AI controller orchestrator: the ability to

select the right task to perform. We develop this component as a standalone component that we

will integrate starting from Chapter 3, where we will bridge the conversational agent with the AI

controller orchestrator through a Pinecone vector store.

Figure 2.6 illustrates the workflow of the AI controller orchestrator we’ll be developing:

•	 C1. AI controller entry point input triggers the process.

•	 C2. Analyzes input, which could be a system or human user prompt.

•	 C3. Embeds user input through GPT-4o’s native functionality.

•	 C4. Embeds task scenario repository through GPT-4o’s native functionality.

•	 C5. Selects a scenario to execute a task that best matches the input.

•	 C6. Executes the scenario selected by the AI controller orchestrator.

Figure 2.6: Workflow of the AI controller orchestrator

Chapter 2 59

We’ll develop this first component of the AI controller orchestrator with OpenAI’s GPT-4o API

and Python. Additionally, since the idea is to leverage the full power of the generative AI model to

perform several tasks requested by the AI controller orchestrator, we will thus avoid overloading

the orchestrator with additional libraries to focus on the architecture of the GenAISys.

In this notebook, GPT-4o will perform three key functions in the program, as shown in Figure 2.7:

•	 Embedding: GPT-4o systematically embeds all the data it receives through a prompt. The

input is embedded before going through the layers of the model. In Chapter 3, we will take

this further by embedding and upserting reusable data such as instruction scenarios into

a Pinecone vector store.

•	 Similarity search: GPT-4o can perform a similarity search with reliable results. GPT-

4o doesn’t have a deterministic fixed cosine similarity function. It learns to understand

relationships through its complex neural network, mimicking similarity judgments in a

much more nuanced, less deterministic way.

•	 Task execution: Once a scenario is chosen, GPT-4o can execute a number of standard

tasks, such as sentiment and semantic analysis.

Figure 2.7: Triggering tasks with similarity searches in a list of instructions

We have defined the workflow of the orchestrator and the generative AI model’s usage. However,

we must examine how a model identifies the task it is expected to perform.

Building the Generative AI Controller60

Understanding the intent functionality
No matter how powerful a generative AI model such as GPT-4o is, it cannot guess what a user

wants without a prompt that explicitly expresses intent. We cannot just say, “The Grand Can-

yon is a great place to visit in Arizona” and expect the model to guess that we want a sentiment

analysis done on our statement. We have to explicitly formulate our intent by entering: “Provide

a sentiment analysis of the following text: The Grand Canyon is a great place to visit in Arizona.”

To resolve the issue of intent for an AI controller, we have to find a framework for it to orchestrate

its tasks. A good place to start is to study the Text-to-Text Transfer Transformer (T5), which

is a text-to-text model (Raffel et al., 2020). A T5 model uses task tags or task-specific prefixes to

provide the intent of a prompt to the transformer model. A task tag contains instructions such

as summarization, translation, and classification. The model will detect the tag and know what

to do, as shown in Figure 2.8.

Figure 2.8: T5 with task tags

Chapter 2 61

Training a T5 model involves explicitly adding a task tag when creating an input and then providing

the response. However, OpenAI GPT models learn which task to perform by analyzing billions of

sequences of language, not explicit structures, that contain instructions and responses. A genera-

tive AI model using GPT-like architectures will thus learn which task to perform implicitly through

the context of the prompt. For example, a well-parsed prompt such as “Provide a sentiment anal-

ysis of the following text: The Grand Canyon is a great place to visit in Arizona.” contains enough

context for GPT-4o to infer the desired operation—without requiring an explicit tag.

Let’s illustrate how a GPT model works by running T5-style examples with GPT-4o’s implicit

analysis of which task needs to be performed.

From T5 to GPT models
In this section, we’ll write a program to show how GPT-4o interprets instructions—a capability

we’ll leverage in our orchestrator. The aim is to demonstrate that, although GPT-style models

infer intent implicitly, they still need clear instructions.

We’ll begin by opening T52GPT.ipynb in the Chapter02 directory on GitHub. Set up the environ-

ment exactly as in the Setting up the environment subsection of the Conversational AI agent section,

installing only the OpenAI environment:

download("commons","requirements01.py")

download("commons","openai_setup.py")

download("commons","openai_api.py")

No additional installations are required. Let’s now begin with a CoLA task.

Corpus of Linguistic Acceptability (CoLA)
The Corpus of Linguistic Acceptability (CoLA) is a public dataset of short English sentences,

each tagged as acceptable (grammatical) or unacceptable (ungrammatical). By testing GPT-4o

on these examples, we can show that advanced generative models can tackle new tasks purely

by understanding language, without any task-specific fine-tuning. This means that we can apply

advanced generative AI models to a wide range of tasks we didn’t train them for.

Let’s first submit the following input to the GPT-4o model to see whether it is acceptable without

an explicit task tag:

input="This aint the right way to talk."

Building the Generative AI Controller62

We will provide minimal information to the system:

mrole = "system"

user_role = "user"

mcontent = "Follow the instructions in the input"

We’ll also make an OpenAI API call with the function we have been using throughout this chapter:

API function call

task_response = openai_api.make_openai_api_call(

 input,mrole,mcontent,user_role

)

print(task_response)

The output shows that even one of the most powerful generative AI models doesn’t have a clue

about what to do without a task tag:

I apologize if my previous response didn't meet your expectations. Please
let me know how I can assist you better!

Now, let’s write an instruction with a task tag and the same message:

input="Is the following sentence gramatically correct:This aint the right
way to talk."

mrole = "system"

user_role = "user"

mcontent = "Follow the instructions in the input"

API function call

task_response = openai_api.make_openai_api_call(

 input,mrole,mcontent,user_role

)

print(task_response)

The input now contains an indication of what is expected of the generative AI model. The output

is now accurate:

The sentence "This aint the right way to talk." is not grammatically
correct. The response corrects the sentence:

"This isn't the right way to talk."

Alternatively, if you want to maintain the informal tone, you could write:

"This ain't the right way to talk."

Chapter 2 63

Note that "ain't" is considered informal and nonstandard in formal
writing.

Let’s now perform a translation task.

Translation task
The task begins with a task tag that is expressed in natural language:

input=”Translate this sentence into French: Paris is quite a city to
visit.”

mrole = “system”

user_role = “user”

mcontent = “Follow the instructions in the input”

API function call

task_response = openai_api.make_openai_api_call(

 input,mrole,mcontent,user_role

)

print(task_response)

The output we get is accurate:

Paris est vraiment une ville à visiter.

Let’s now perform a Semantic Textual Similarity Benchmark (STSB) task.

Semantic Textual Similarity Benchmark (STSB)
STSB-style scoring is an important feature for a GenAISys AI controller, which depends on sim-

ilarity searches to pick the right instruction scenarios, documents, and other resources. The or-

chestrator will rely on this very capability. In the test that follows, we submit two sentences to

the model and ask it to judge their semantic similarity:

input=”stsb:Sentence 1: This is a big dog. Sentence 2: This dog is very
big.”

mrole = “system”

user_role = “user”

mcontent = “Follow the instructions in the input”

API function call

task_response = openai_api.make_openai_api_call(

 input,mrole,mcontent,user_role)

print(task_response)

Building the Generative AI Controller64

The output we get is accurate:

The sentences "This is a big dog." and "This dog is very big." are
semantically similar. Both sentences convey the idea that the dog
in question is large in size. The difference in wording does not
significantly alter the meaning, as both sentences describe the same
characteristic of the dog.

This function will prove to be very useful when we’re searching for data that matches the input

in a dataset. Let’s now run a summarization task.

Summarization
In the following input, GPT-4o can detect the summarization instruction tag and also interpret

the maximum length of the response required:

input="Summarize this text in 10 words maximum: The group walked in the
forest on a nice sunny day. The birds were singing and everyone was
happy."

mrole = "system"

user_role = "user"

mcontent = "Follow the instructions in the input"

API function call

task_response = openai_api.make_openai_api_call(

 input,mrole,mcontent,user_role)

print(task_response)

The output is once again accurate:

Group enjoyed a sunny forest walk with singing birds.

The takeaway of this exploration is that no matter which generative AI model we implement, it

requires task tags to react as we expect. Next, we’ll use this insight to implement semantic textual

similarity in our orchestrator for processing task tags.

Implementing the orchestrator for instruction selection
In this section, we will begin building the orchestrator for two instructions based on task tags, as

shown in Figure 2.9: sentiment analysis to determine the sentiment of a sentence and semantic

analysis to analyze the facts in a sentence.

Chapter 2 65

We will make the system more complex by asking the generative AI model to find the best task

tag scenario (sentiment or semantic analysis) based on the input. In other words, the task tag

will not be part of the input. We will use GPT-4o’s semantic textual similarity features to choose

the right task tag itself.

Figure 2.9: Running tasks with implicit task tags

Setting up the environment is the same as earlier:

download("commons","requirements01.py")

download("commons","openai_setup.py")

download("commons","openai_api.py")

No additional installations are required for the orchestrator. We will begin by implementing an

instruction scenario selection.

 Eventually, our orchestrator will support any task (see 3. Any Task required in Figure

2.9), not just sentiment or semantic analysis.

Building the Generative AI Controller66

Selecting a scenario
The core of an AI controller is to decide what to do when it receives an input (system or human

user). The selection of a task opens a world of possible methods that we will explore throughout

the book. However, we can classify them into two categories:

•	 Using an explicit task tag to trigger an instruction. This tag can be a context in a generative

AI model and expressed freely in various ways in a prompt.

•	 The prompt has no task instruction but instead a repository of scenarios from which the

AI controller will make decisions based on semantic textual similarity.

Here, we’ll explore the second, more proactive approach. We’ll test two prompts with no in-

structions, no task tag, and no clue as to what is expected of the generative AI model. Although

we will implement other, more explicit approaches later with task tags, a GenAISys AI controller

orchestrator must be able to be proactive in certain situations.

•	 The first prompt is an opinion on a movie, implying that a sentiment analysis might

interest the user:

if prompt==1:

 input = "Gladiator II is a great movie although I didn't like
some of the scenes. I liked the actors though. Overall I really
enjoyed the experience."

•	 The second prompt is a fact, implying that a semantic analysis might interest the user:

if prompt==2:

 input = "Generative AI models such as GPT-4o can be built into
Generative AI Systems. Provide more information."

To provide the AI controller with decision-making capabilities, we will need a repository of in-

struction scenarios.

Defining task/instruction scenarios
Scenarios are sets of instructions that live in a repository within a GenAISys. While ChatGPT-

like models are trained to process many instructions natively, domain-specific use cases need

custom scenarios (we’ll dive into these starting from Chapter 5). For example, a GenAISys could

receive a message such as Customer order #9283444 is late. The message could be about a

production delay or a delivery delay. By examining the sender’s username and group (production

or delivery department), the AI controller can determine the context and, selecting a scenario,

take an appropriate decision.

Chapter 2 67

In both cases, we begin by creating a repository of structured scenarios (market, sentiment, and

semantic analysis):

scenarios = [

 {

 "scenario_number": 1,

 "description": "Market Semantic analysis.You will be provided with
a market survey on a give range of products.The term market must be in the
user or system input. Your task is provide an analysis."

 },

 {

 "scenario_number": 2,

 "description": " Sentiment analysis Read the content and
classify the content as an opinion If it is not opinion, stop there If
it is an opinion then your task is to perform a sentiment analysis on
these statements and provide a score with the label: Analysis score:
followed by a numerical value between 0 and 1 with no + or - sign.Add an
explanation."

 },

 {

 "scenario_number": 3,

 "description": "Semantic analysis.This is not an analysis but a
semantic search. Provide more information on the topic."

 }

]

We will also add a dictionary of the same scenarios, containing simple definitions of the scenarios:

Original list of dictionaries

scenario_instructions = [

 {

 "Market Semantic analysis.You will be provided with a market
survey on a give range of products.The term market must be in the user or
system input. Your task is provide an analysis."

 In this notebook, the scenarios are stored in memory. In Chapter 3, we will organize

the storage and retrieval of these instruction sets in Pinecone vector stores.

Building the Generative AI Controller68

 },

 {

 "Sentiment analysis Read the content return a sentiment analysis
on this text and provide a score with the label named : Sentiment analysis
score followed by a numerical value between 0 and 1 with no + or - sign
and add an explanation to justify the score."

 },

 {

 "Semantic analysis.This is not an analysis but a semantic search.
Provide more information on the topic."

 }

]

We now extract the strings from the dictionary and store them in a list:

Extract the strings from each dictionary

instructions_as_strings = [

 list(entry)[0] for entry in scenario_instructions

]

At this point, our AI controller has everything it needs to recognize intent—matching any incoming

prompt to the best-fitting scenario.

Performing intent recognition and scenario selection
We first define the parameters of the conversational AI agent just as we did in the Conversational

AI agent section:

Define the parameters for the function call

mrole = "system"

mcontent = "You are an assistant that matches user inputs to predefined
scenarios. Select the scenario that best matches the input. Respond with
the scenario_number only."

user_role = "user"

The orchestrator’s job is to find the best task for any given input, making the AI controller flexible

and adaptive. In some cases, the orchestrator may decide not to apply a scenario and just follow

the user’s input. In the following example, however, the orchestrator will select a scenario and

apply it.

Chapter 2 69

We now adjust the input to take the orchestrator’s request into account:

Adjust `input` to combine user input with scenarios

selection_input = f"User input: {input}\nScenarios: {scenarios}"

print(selection_input)

GPT-4o will now perform a text semantic similarity search as we ran in the Semantic Textual

Similarity Benchmark (STSB) section. In this case, it doesn’t just perform a plain text comparison,

but matches one text (the user input) against a list of texts (our scenario descriptions):

Call the function using your standard API call

response = openai_api.make_openai_api_call(

 selection_input, mrole, mcontent, user_role

)

Our user input is as follows:

User input: Gladiator II is a great movie

Then, the scenario is chosen:

Print the response

print("Scenario:",response)

The scenario number is then chosen, stored with the instructions that go with it, and displayed:

scenario_number=int(response)

instructions=scenario_instructions[scenario_number-1]

print(instructions)

For our Gladiator II example, the orchestrator correctly picks the sentiment analysis scenario:

{'Sentiment analysis Read the content return a sentiment analysis on this
text and provide a score with the label named : Sentiment analysis score
followed by a numerical value between 0 and 1 with no + or - sign and
add an explanation to justify the score.'}

This autonomous task-selection capability—letting GenAISys choose the right analysis without

explicit tags—will prove invaluable in real-world deployments (see Chapter 5). The program now

runs the scenarios with the generative AI agent.

Building the Generative AI Controller70

Running scenarios with the generative AI agent
Now that the AI controller has identified the correct scenario_number, it’s time to execute the se-

lected task. In this notebook, we’ll walk through that process step by step. We first print the input:

print(input)

Using the scenario_number value, we access the scenario description from our instructions_

as_strings list:

Accessing by line number (1-based index)

line_number = scenario_number

instruction = instructions_as_strings[line_number - 1] # Adjusting for
0-based indexing

print(f"Instruction on line {line_number}:\n{instruction}")

mrole = "system"

user_role = "user"

mcontent = instruction

The orchestrator is now ready to run a sentiment analysis.

Sentiment analysis
We append the description of the scenario to the original user prompt and send the combined

request to GPT-4o:

Instruction on line 2:

Sentiment analysis Read the content return a sentiment analysis nalysis
on this text and provide a score with the label named : Sentiment analysis
score followed by a numerical value between 0 and 1 with no + or - sign
and add an explanation to justify the score.

API function call

sc_input=instruction +" "+ input

print(sc_input)

task_response = openai_api.make_openai_api_call(

 sc_input,mrole,mcontent,user_role

)

print(task_response)

Chapter 2 71

For our Gladiator II example, the response might look like this:

Sentiment analysis score 0.75

The text expresses a generally positive sentiment towards the movie
"Gladiator II." The use of words like "great movie," "liked the actors,"
and "really enjoyed the experience" indicates a favorable opinion.
However, the mention of not liking some of the scenes introduces a slight
negative element. Despite this, the overall enjoyment and positive remarks
about the actors and the movie as a whole outweigh the negative aspect,
resulting in a sentiment score leaning towards the positive side.

The response shows that the orchestrator found a scenario that matches the input and produces

an acceptable output. Now, let’s go back, change the prompt, and see whether the orchestrator

finds the right scenario.

Semantic analysis
The goal now is to verify, without changing a single line of code, whether the orchestrator can

access another scenario. The orchestrator will rely on GPT-4o’s native ability to perform semantic

text similarity searches.

We will now activate prompt 2:

prompt=2

…

if prompt==2:

 input = "Generative AI models such as GPT-4o can be built into
Generative AI Systems. Provide more information."

This input clearly calls for a semantic analysis rather than sentiment analysis. We then reuse the

exact same code as our sentiment analysis search:

Accessing by line number (1-based index)

line_number = scenario_number

instruction = instructions_as_strings[line_number - 1] # Adjusting for
0-based indexing

print(f"Instruction on line {line_number}:\n{instruction}")

mrole = "system"

user_role = "user"

mcontent = instruction

Building the Generative AI Controller72

The output shows that the right scenario was found:

Instruction on line 3:

Semantic analysis.This is not an analysis but a semantic search. Provide
more information on the topic.

The task response is displayed:

print(task_response)

The output shows that the orchestrator produces a coherent semantic analysis:

Generative AI models, like GPT-4, are advanced machine learning models
designed to generate human-like text based on the input they receive….

This demonstrates that in some cases, the orchestrator will be able to find the right scenarios

without task tags. This will prove useful when we tackle more complex workflows, such as ad-

vanced production and support.

Summary
The first takeaway from this chapter is the central role of humans in a GenAISys. Human design

drove the creation of both our conversational agent and orchestrator. We started developing these

two complex components with simply an OpenAI API and Python, yet we humans designed the

initial levels of the AI controller that powers our custom GenAISys. The basic GenAISys rule will

always apply: no human roles, no GenAISys. We design AI systems, implement them, maintain

them, and evolve them based on ongoing feedback.

The second takeaway is how our conversational AI agent goes beyond a small-scale ChatGPT-like

structure. We not only built short-term context and memory retention for a full-turn dialogue,

but we also added long-term memory across multiple users and multiple topics. Our dialogue

included three users (John, Myriam, and Bob) and two topics (geology and surfing). As we prog-

ress through the book, we will expand the scope of these multi-user, multi-topic sessions to use

cases where team cooperation is essential.

The third takeaway concerns our AI controller orchestrator. We gave the orchestrator a small

scenario dataset containing custom instructions that we can expand for a domain-specific use

case, and then leveraged GPT-4o to both select the appropriate scenario and execute the task itself.

Chapter 2 73

At this point, we have a conversational agent and a nascent AI controller orchestrator. When we

assemble our AI controller, they will together form a unique multi-user, multi-domain custom-

ized GenAISys. To build our multi-user, multi-domain GenAISys AI controller, we will now build

a Pinecone vector store in the next chapter.

Questions
1.	 A ChatGPT-like GenAISys only needs a generative AI model such as GPT-4o. (True or False)

2.	 A ChatGPT-like GenAISys doesn’t require an AI controller. (True or False)

3.	 Human roles are critical when building and running GenAISys. (True or False)

4.	 Generally, not always, a generative AI model such as GPT-4o contains a task tag in one

form or the other. (True or False)

5.	 Sometimes, not always, a generative model can find the most probable task to perform

without a task tag. (True or False)

6.	 Semantic text similarity cannot be natively performed by GPT-4o. (True or False)

7.	 A full-turn generative AI conversation loop with an OpenAI API AI requires coding. (True

or False)

8.	 Long-term memory AI conversation sessions are never necessary. (True or False)

9.	 Summarizing a text can only be done in English by GPT-4o. (True or False)

10.	 An AI controller orchestrator is sentient. (True or False)

References
•	 Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu,

P. J. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
https://arxiv.org/abs/1910.10683

•	 Ren, J., Sun, Y., Du, H., Yuan, W., Wang, C., Wang, X., Zhou, Y., Zhu, Z., Wang, F., & Cui, S.

(2024). Generative Semantic Communication: Architectures, Technologies, and Applications.
https://doi.org/10.48550/arXiv.2412.08642

Further reading
•	 Koziolek, H., Gruener, S., & Ashiwal, V. (2023). ChatGPT for PLC/DCS Control Logic Gener-

ation. https://doi.org/10.48550/arXiv.2305.15809

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683

https://doi.org/10.48550/arXiv.2412.08642

https://doi.org/10.48550/arXiv.2305.15809

Building the Generative AI Controller74

Subscribe for a Free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/TRO5B or scan the QR code below.

https://packt.link/TRO5B

3
Integrating Dynamic RAG into
the GenAISys

A business-ready generative AI system (GenAISys) needs to be flexible and ready to face the

rapidly evolving landscape of the AI market. The AI controller acts as an adaptive orchestrator

for e-marketing, production, storage, distribution, and support, but to satisfy such a range of

tasks, we need a retrieval-augmented generation (RAG) framework. In the previous chapter,

we built a conversational AI agent and a function for similarity search for instruction scenarios

(AI orchestrator) for a generative AI model. In this chapter, we will enhance that foundation and

build a scalable RAG in a Pinecone index to integrate both instruction scenarios and classical data,

which the generative AI model will connect to.

Why do we need this dynamic and adaptive RAG framework with vectorized scenarios of in-

structions on top of classical data? Because the global market affects entities internally and ex-

ternally. For example, a hurricane can cause electricity shortages, putting the supply chain of

businesses in peril. Businesses might have to relocate supply routes, production, or distribution.

General-purpose AI cloud platforms might do some of the job. But more often than not, we will

need to provide custom, domain-specific functionality. For that reason, we need a dynamic set

of instructions in a vector store repository as we do for RAG data.

 We make a clear distinction in this chapter between instruction scenarios—ex-

pert-crafted prompt fragments (or task tags, as explained in the previous chapter)

that tell the model how to reason or act—and classical data—the reference material

the RAG system retrieves to ground its answers.

Integrating Dynamic RAG into the GenAISys76

We will begin by defining the architecture scenario-driven task executions for a generative AI

model, in this case, GPT-4o, through a Pinecone index. We will carefully go through the cost-ben-

efits of investing in intelligent scenarios for the generative model through similarity search and

retrieval. We will introduce a dynamic framework to produce ChatGPT-like capabilities that we

will progressively introduce in the following chapters.

Once the architecture is defined, we will first build a Pinecone index to chunk, embed, and upsert

instruction scenarios. We will make sure the GenAISys vector store can embed a query and find

a relevant instruction scenario. This capability will be a key component in Chapter 4, Building

the AI Controller Orchestration Interface, when we design the conversational agent’s interface and

orchestrator. Finally, we will write a program to upsert classical data in a RAG environment to

the same Pinecone index alongside the instruction scenarios. Differentiation between scenarios

and classical data will be maintained using distinct namespaces. By the end of this chapter, we

will have built the main components to link instructions to a generative AI model. We will be

ready to design a user interface and AI controller orchestrator in Chapter 4.

This chapter covers the following topics:

•	 Architecting RAG for the dynamic retrieval of instructions and data

•	 The law of diminishing returns when developing similarity searches

•	 Examining the architecture of a hybrid GenAISys CoT

•	 Creating a Pinecone index by chunking, embedding, and upserting instruction scenarios

•	 Enhancing a Pinecone index with classical data

•	 Querying the Pinecone index

Our first task is to architect a RAG framework for dynamic retrieval.

Architecting RAG for dynamic retrieval
In this section, we will define a Pinecone index that stores both instruction scenarios and classical

data. This structure gives GenAISys dynamic, cost-effective retrieval: the instruction scenarios

steer the generative AI model (GPT-4o in our example), while the classical data supplies the

factual context used by the RAG pipeline.

We will go through the following components:

•	 Scenario-driven task execution: Designing optimized instructional prompts (“scenarios”)

that we will upsert to the Pinecone index.

Chapter 3 77

•	 Cost-benefit strategies: Considering the law of diminishing returns to avoid overinvest-

ing in automation.

•	 Partitioning Pinecone with namespaces: Using Pinecone index namespaces to clearly

differentiate instruction scenarios from classical data.

•	 Hybrid retrieval framework: Implementing implicit vector similarity searches but also

triggering explicit instructions for the generative AI model (more on this in the Scenar-

io-driven task execution section).

•	 CoT loops: Explaining how the flexibility of the scenario selection process will lead to

loops of generative AI functions before finally producing an output.

•	 GenAISys framework: Laying the groundwork for the advanced GenAISys framework we

are building throughout the book.

Let’s first dive deeper into scenario-driven task execution.

Scenario-driven task execution
In the previous chapter, we saw two complementary ways the AI controller can pick what to do

next:

•	 Implicit selection: The controller embeds the user’s prompt, runs a semantic similarity

search across its scenario library, and chooses the closest match without any task tag. This

gave us flexible, code-free orchestration (e.g., it automatically chose a sentiment-analysis

scenario for the Gladiator II review).

•	 Explicit selection: The desired task is spelled out, either as a task tag in the prompt or as

a user interface action, such as “Run web search.” Here, the controller skips the similarity

search and jumps straight to the requested tool or workflow.

That same pattern continues in this chapter, but at a larger scale. Instead of a few hand-picked

prompts, we manage hundreds or even thousands of expert-authored instruction scenarios stored

in a vector database; instead of single-user experiments, we support many concurrent users and

workflows. This scenario-driven (implicit) approach has three advantages:

•	 Professional experts typically create these advanced prompts/instruction scenarios, often

surpassing the expertise level of mainstream users.

•	 The scenarios can be co-designed by AI specialists and subject-matter experts, covering

a wide range of activities in a corporation, from sales to delivery.

Integrating Dynamic RAG into the GenAISys78

•	 The order of execution of the scenarios is prompt-driven, flexible, and unordered. This

dynamic approach avoids hardcoding the order of the tasks, increasing adaptability as

much as possible.

However, while implicit task planning maximizes flexibility, as we move toward building busi-

ness-ready systems, we must balance flexibility with cost-efficiency. In some cases, therefore,

explicit instructions, such as triggering a web search by selecting the option in the user interface,

can significantly reduce the potential costs, as shown in Figure 3.1:

Figure 3.1: Diminishing returns as costs increase

The more we automate implicit scenarios that the generative AI model will select with vector

similarity searches in the Pinecone index, the higher the cost. To manage this, we must carefully

consider the law of diminishing returns:𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵0 + (𝑟𝑟𝑟 𝑟 𝑟𝑟) − (𝑑𝑑𝑑𝑑𝑑𝑑 2)
In this equation, as illustrated in Figure 3.1, in theoretical units, we have the following:

•	 𝐵𝐵 represents the overall benefit, which is represented by roughly 15 when the cost

reaches 50.

Chapter 3 79

•	 𝐵𝐵0 represents the initial benefit of storing instruction scenarios in the Pinecone index and

asking the generative AI model to select one through vector similarity with the user input.

In this case, it is nearly 1 benefit unit for 1 cost unit.

•	 𝑟𝑟 is the rate at which the benefit begins to increase as we increase the cost.

•	 𝐶𝐶 represents the cost measured in theoretical units (currency, human resources, or com-

putational resources).

•	 𝑑𝑑 denotes the rate at which returns diminish as cost increases.

For example, when the cost reaches 7 theoretical units, the benefit reaches 7 theoretical units.

This 1 unit of cost generating 1 unit of benefit is reasonable. However, when the benefit reaches

10 units, the cost could double to 14 units, which signals that something is going wrong.

The diminishing 𝑑𝑑 factor has a strong negative impact 𝑁𝑁𝑁𝑁 on the benefits through squared costs:𝑁𝑁𝑁𝑁 = −(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2)

Let’s now explore how we identify instruction scenarios within a Pinecone index.

Hybrid retrieval and CoT
Our first step is teaching the GenAISys framework to distinguish clearly between classical data

and instruction scenarios. To achieve this, we will separate the instruction scenarios and the data

with two namespaces within the same Pinecone index, named genai-v1:

•	 genaisys will contain instruction vectors of information

•	 data01 will contain data vectors of information

 We will carefully monitor the factor 𝑑𝑑 as we move through the use cases in this

book. We will have to make choices between running implicit automated scenario

selections through the Pinecone index and explicitly triggering actions through

predefined instructions in the prompt itself.

 We will implement genai-v1 in code with additional explanations in the Creating

the Pinecone index section of this chapter.

Integrating Dynamic RAG into the GenAISys80

Once the Pinecone index has been partitioned into scenarios and data, we can take the GenAISys

to another level with hybrid retrieval, as shown in Figure 3.2.

Figure 3.2: AI controller orchestrating GenAISys

The hybrid retrieval framework depicted in the preceding figure will enable GenAISys to do the

following:

•	 Run the generative AI model using processed, chunked, and embedded data memory (see

1–3 in Figure 3.2) directly without going through the Pinecone index (see 3B). This will

reduce costs for ephemeral data, for example.

•	 Run the generative AI model after the chunked and embedded data is upserted to the

Pinecone index either as a set of instructions in a scenario or as classical data.

•	 Create a CoT loop between the Pinecone index (see 3B) and the generative AI model con-

troller as an orchestrator. For example, the output of the model can serve as input for an-

other CoT cycle that will retrieve scenarios or data from the Pinecone index. ChatGPT-like

copilots often present their output and then finish by asking whether you’d like to explore

further—sometimes even suggesting ready-made follow-up prompts you can click on.

We’ll begin building our GenAISys in this chapter and continue refining it over the next few

chapters. Starting from Chapter 4, Building the AI Controller Orchestration Interface, we’ll use the

RAG foundations introduced here to develop the hybrid retrieval framework shown in Figure 3.2.

 CoT loops can operate implicitly via vector similarity search or explicitly via direct

instruction triggers or task tags (such as “Run a web search”). For example, ChatGPT-

like copilots can trigger web searches directly through the user interface or rules in

the AI controller.

Chapter 3 81

The GenAISys we’re building will include dynamic process management—a requisite for keeping

pace with the shifting market conditions. Specifically, our GenAISys will do the following:

•	 Leverage Pinecone’s vector database or in-memory chunked and embedded information

with similarity searches to optimize retrieval (instructions or data)

•	 Explicitly trigger direct instructions, such as a web search, and include them in a CoT loop

for summarization, sentiment analysis, or semantic analysis

•	 Break down complex sets of instructions and data retrieval into manageable steps

•	 Iteratively refine solutions in a human-like thought process before producing an output

•	 Get the best out of generative AI models, including OpenAI’s reasoning models such as

o3, by providing them with an optimized instruction scenario

Our initial step in this chapter is building the genai-v1 Pinecone index, which the AI controller

will use to manage instruction scenarios within the genaisys namespace. Then, we’ll demonstrate

how to chunk, embed, and upsert classical data into the data01 namespace. Let’s get moving!

Building a dynamic Pinecone index
We’ll focus on creating a Pinecone index designed to manage both instruction scenarios and

classical data. In the upcoming sections, we’ll begin upserting the instruction scenarios as well

as classical data. The workflow breaks down into three straightforward stages:

•	 Setting up the environment for OpenAI and Pinecone

•	 Processing the data, chunking it, and then embedding it

•	 Initializing the Pinecone index

Open the Pinecone_instruction_scenarios.ipynb notebook within the Chapter03 directory on

GitHub (https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/

tree/main). Our first task is to set up the environment.

Setting up the environment
As we move through the book, we will continually reuse functions and features implemented in

Chapters 1 and 2, add new ones for Pinecone, and organize the installations into two parts:

•	 Installing OpenAI using the same process as in Chapter 1. Refer back to that chapter if

needed.

•	 Installing Pinecone for this and following chapters.

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main

Integrating Dynamic RAG into the GenAISys82

To begin, download the files we need by retrieving grequests.py from the GitHub repository:

!curl -L https://raw.githubusercontent.com/Denis2054/Building-Business-
Ready-Generative-AI-Systems/master/commons/grequests.py --output
grequests.py

To install OpenAI, follow the same steps as in Chapter 1. We’ll move on to install Pinecone now,

which we will refer to in upcoming chapters throughout the book.

Installing Pinecone
Download the Pinecone requirements file that contains the instructions for the Pinecone version

we want to use throughout the book. If another version is required, this will be the only file that

needs to be updated:

download("commons","requirements02.py")

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book.

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 3 83

The file contains the installation function, which we will call with the following command:

Run the setup script to install and import dependencies

%run requirements02

The script is the same as the one for OpenAI described in Chapter 1, but adapted to Pinecone. We

first uninstall Pinecone and then install the version we need:

import subprocess

import sys

def run_command(command):

 try:

 subprocess.check_call(command)

 except subprocess.CalledProcessError as e:

 print(f"Command failed: {' '.join(command)}\nError: {e}")

 sys.exit(1)

Uninstall the 'pinecone-client' package

print("Uninstalling 'pinecone-client'...")

run_command(

 [sys.executable, "-m", "pip", "uninstall", "-y", "pinecone-client"]

)

Install the specific version of 'pinecone-client'

print("Installing 'pinecone-client' version 5.0.1...")

run_command(

 [

 sys.executable, "-m", "pip", "install",\

 "--force-reinstall", "pinecone-client==5.0.1"

]

)

Then, we verify the installation:

Verify the installation

try:

 import pinecone

 print(

 f"'pinecone-client' version {pinecone.__version__} is installed."

)

except ImportError:

 print(

Integrating Dynamic RAG into the GenAISys84

 "Failed to import the 'pinecone-client' library after
installation."

)

 sys.exit(1)

The output shows we have successfully installed the client:

Uninstalling 'pinecone-client'...

Installing 'pinecone-client' version 5.0.1...

'pinecone-client' version 5.0.1 is installed.

Let’s go ahead and initialize the Pinecone API key.

Initializing the Pinecone API key
The program now downloads pinecone_setup.py, which we will use to initialize the Pinecone

API key:

download("commons","pinecone_setup.py")

This setup mirrors the Google Colab secrets-based approach we used for OpenAI in Chapter 1, but

it’s adapted here for initializing the Pinecone API.:

Import libraries

import openai

import os

from google.colab import userdata

Function to initialize the Pinecone API key

def initialize_pinecone_api():

 # Access the secret by its name

 PINECONE_API_KEY = userdata.get('PINECONE_API_KEY')

 if not PINECONE_API_KEY:

 raise ValueError("PINECONE_API_KEY is not set in userdata!")

 # Set the API key in the environment and OpenAI

 os.environ['PINECONE_API_KEY'] = PINECONE_API_KEY

 print("PINECONE_API_KEY initialized successfully.")

If Google secrets was set to True for OpenAI in the OpenAI section of this notebook, then the

Pinecone setup function will be called:

Chapter 3 85

if google_secrets==True:

 import pinecone_setup

 pinecone_setup.initialize_pinecone_api()

If Google secrets was set to False, then you can implement a custom function by uncommenting

the code and entering the Pinecone API key with any method you wish:

if google_secrets==False: # Uncomment the code and choose any method you
wish to initialize the Pinecone API key

 import os

 #PINECONE_API_KEY=[YOUR PINECONE_API_KEY]

 #os.environ['PINECONE_API_KEY'] = PINECONE_API_KEY

 #openai.api_key = os.getenv("PINECONE_API_KEY")

 #print("Pinecone API key initialized successfully.")

The program is now ready to process the data we will upsert to the Pinecone index.

Processing data
Our goal now is to prepare the scenarios for storage and retrieval so that we can then query the

Pinecone index. The main steps of the process are represented in Figure 3.2, which is only one

layer of the roadmap for the following chapters. We will process the data in the following steps:

1.	 Data loading and preparation, in which the data will be broken into smaller parts. In

this case, each scenario will be stored in one line of a scenario list, which will prepare the

chunking process. We will not always break text into lines, however, as we will see in the

Upserting classical data into the index section later.

2.	 Chunking functionality to store each line of scenarios into chunks.

3.	 Embedding the chunks of text obtained.

4.	 Verification to ensure that we embedded the corresponding number of chunks.

Let’s now cover the first two steps: loading and preparing the data, followed by chunking.

Data loading and chunking
We will use the scenarios implemented in Chapter 2. They are stored in a file that we will now

download:

download("Chapter03","scenario.csv")

Integrating Dynamic RAG into the GenAISys86

We will add more scenarios throughout our journey in this book to create a GenAISys. For the

moment, our main objective is to get our Pinecone index to work. The program first initializes

start_time for time measurement. Then we load the lines of scenario instructions directly into

chunks line by line:

import time

start_time = time.time() # Start timing

File path

file_path = 'scenario.csv'

Read the file, skip the header, and clean the lines

chunks = []

with open(file_path, 'r') as file:

 next(file) # Skip the header line

 chunks = [line.strip() for line in file] # Read and clean lines as
chunks

Then the code displays the number of chunks and the time it took to create the chunks:

response_time = time.time() - start_time # Measure response time

print(f"Response Time: {response_time:.2f} seconds") # Print response
time

Total number of chunks: 3

Response Time: 0.00 seconds

The program now verifies the first three chunks of scenario instructions:

Optionally, print the first three chunks for verification

for i, chunk in enumerate(chunks[:3], start=1):

 print(chunk)

The output shows the three scenarios we will be working on in this chapter:

['ID,SCENARIO\n',

 '100,Semantic analysis.This is not an analysis but a semantic search.
Provide more information on the topic.\n',

 '200,Sentiment analysis Read the content return a sentiment analysis
nalysis on this text and provide a score with the label named : Sentiment
analysis score followed by a numerical value between 0 and 1 with no + or
- sign and add an explanation to justify the score.\n',

 '300,Semantic analysis.This is not an analysis but a semantic search.
Provide more information on the topic.\n']

Chapter 3 87

The chunks of data are now ready for embedding. Let’s proceed with embedding.

Embedding the dataset
To embed the dataset, we will first initialize the embedding model and then embed the chunks.

The program first initializes the embedding model.

Initializing the embedding model
We will be using an OpenAI embedding model to embed the data. To embed our data with an

OpenAI model, we can choose one of three main models:

•	 text-embedding-3-small, which is fast and has a lower resource usage. This is sufficient

for real-time usage. It is a smaller model and is thus cost-effective. However, as the vector

store will increase in size with complex scenarios, it might be less accurate for nuanced

tasks.

•	 text-embedding-3-large, which provides high accuracy and nuanced embeddings and

will prove effective for complex semantic similarity searches. It requires more resources

and costs more.

•	 text-embedding-ada-002, which is cost-effective for good-quality embeddings. However,

it’s slightly slower than models such as text-embedding-3-small and text-embedding-

3-large.

To import a limited number of scenarios in this chapter, we will use text-embedding-3-small

to optimize speed and cost. The program initializes the model while the others are commented

for further use if needed:

import openai

import time

embedding_model="text-embedding-3-small"

#embedding_model="text-embedding-3-large"

#embedding_model="text-embedding-ada-002"

 You can consult the OpenAI documentation at https://platform.openai.com/

docs/guides/embeddings for more info.

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings

Integrating Dynamic RAG into the GenAISys88

We initialize the OpenAI client:

Initialize the OpenAI client

client = openai.OpenAI()

An embedding function is then created that will convert the text sent to it into embeddings. The

function is designed to produce embeddings for a batch of input texts (texts) with the embed-

dings model of our choice, in this case, text-embedding-3-small:

def get_embedding(texts, model="text-embedding-3-small")

The function first cleans the text by replacing newline characters in each text with spaces:

texts = [text.replace("\n", " ") for text in texts]

Then, the function makes the API embedding call:

response = client.embeddings.create(input=texts, model=model)

The embeddings are extracted from the response:

embeddings = [res.embedding for res in response.data] # Extract
embeddings

Finally, the embeddings are returned:

return embeddings

The program is now ready to embed the chunks.

Embedding the chunks
The program first defines a function to embed the chunks:

def embed_chunks(

 chunks, embedding_model="text-embedding-3-small",

 batch_size=1000, pause_time=3

):

The parameters of the function are:

•	 chunks: The parts of text to embed

•	 embedding_model: Defines the model to use, such as text-embedding-3-small

Chapter 3 89

•	 batch_size: The number of chunks the function can process in a single batch, such as

batch_size=1000

•	 pause_time: A pause time in seconds, which can be useful for rate limits

We then initialize the timing function, embeddings variable, and counter:

start_time = time.time() # Start timing the operation

embeddings = [] # Initialize an empty list to store the embeddings

counter = 1 # Batch counter

The code is now ready to process the chunks in batches:

Process chunks in batches

 for i in range(0, len(chunks), batch_size):

 chunk_batch = chunks[i:i + batch_size] # Select a batch of chunks

Each batch is then sent to the embedding function:

 # Get the embeddings for the current batch

 current_embeddings = get_embedding(

 chunk_batch, model=embedding_model

)

The embedded batch is appended to the embeddings list:

Append the embeddings to the final list

 embeddings.extend(current_embeddings)

The number of batches is monitored and displayed and the pause is activated:

 # Print batch progress and pause

 print(f"Batch {counter} embedded.")

 counter += 1

 time.sleep(pause_time) # Optional: adjust or remove this
depending on rate limits

Once all the batches are processed, the total time is displayed:

 # Print total response time

 response_time = time.time() - start_time

 print(f"Total Response Time: {response_time:.2f} seconds")

Integrating Dynamic RAG into the GenAISys90

The embedding function is ready to be called with the chunks list:

embeddings = embed_chunks(chunks)

The output shows that the scenario data has been embedded:

Batch 1 embedded.

Total Response Time: 4.09 seconds

The first embedding is displayed for verification:

print("First embedding:", embeddings[0])

The output confirms that the embeddings have been generated:

First embedding: [0.017762450501322746, 0.041617266833782196,
-0.024105189368128777,…

The final verification is to check that the number of embeddings matches the number of chunks:

Check the lengths of the chunks and embeddings

num_chunks = len(chunks)

print(f"Number of chunks: {num_chunks}")

print(f"Number of embeddings: {len(embeddings)}")

The output confirms that the chunking and embedding process is most probably successful:

Number of chunks: 3

Number of embeddings: 3

The chunks and embeddings are now ready to be upserted into the Pinecone index.

Creating the Pinecone index
The genai-v1 Pinecone index we will create will contain two namespaces, as shown in Figure 3.3:

•	 genaisys: A repository of instruction scenarios. These prompts drive generative AI be-

havior and can also trigger traditional functions such as web search.

•	 Data01: The embedded classical data that the RAG pipeline queries.

Chapter 3 91

Figure 3.3: Partitioning the Pinecone index into namespaces

We begin by importing two classes:

from pinecone import Pinecone, ServerlessSpec

The Pinecone class is the primary interface to interact with the Pinecone index. We will use this

class to configure Pinecone’s serverless services.

Before going further, you will need to set up a Pinecone account and obtain an API key. Make sure

to verify the cost of these services at https://www.pinecone.io/. This chapter is self-contained,

so you can begin by reading the content, comments, and code before deciding on creating a

Pinecone account.

Once our account is set up, we need to retrieve and initialize our API key:

Retrieve the API key from environment variables

api_key = os.environ.get('PINECONE_API_KEY')

if not api_key:

 raise ValueError("PINECONE_API_KEY is not set in the environment!")

Initialize the Pinecone client

pc = Pinecone(api_key=api_key)

We now import the specification class, define the name of our index (genai-v1), and initialize

our first namespace (genaisys) for our scenarios:

from pinecone import ServerlessSpec

index_name = "genai-v1"

namespace="genaisys"

https://www.pinecone.io/

Integrating Dynamic RAG into the GenAISys92

We now have a project management decision to make—use the Pinecone cloud to host our index

or Amazon Web Services (AWS)?

cloud = os.environ.get('PINECONE_CLOUD') or 'aws'

region = os.environ.get('PINECONE_REGION') or 'us-east-1'

spec = ServerlessSpec(cloud=cloud, region=region)

The code first checks whether an environment variable (PINECONE_CLOUD) is set to use the Pine-

cone cloud. If there is no predefined environment variable check set, the variable defaults to AWS

with 'aws' and 'us-east-1' as the default region.

In this case, AWS was chosen for the following reasons:

•	 Market leadership and reliability: AWS has a market share of over 30% of the global

infrastructure market. As such, it is deemed reliable by a large number of organizations.

•	 Compliance and security standards: AWS has over 140 security standards for data se-

curity and privacy, including PCI-DSS and HIPAA/HITECH, FedRAMP, GDPR, FIPS 140-2,

and NIST 800-171.

•	 Scalability: AWS has a global network of data centers, making scalability seamless.

Alternatively, you can create an index manually in your Pinecone console to select the embedding

model and the host, such as AWS or Google Cloud Platform (GCP). You can also select your pod

size from x1 to more, which will determine the maximum size of your index. Each choice depends

on your project and resource optimization strategy.

In any case, we need metrics to monitor usage and cost. Pinecone provides detailed usage metrics

accessible via your account, allowing you to manage indexes efficiently. For example, we might

want to delete information you don’t need anymore, add targeted data, or optimize the usage

per user.

Pinecone provides three key metrics:

•	 Serverless storage usage: Measured in gigabyte-hours (GB-hours). The cost is calcu-

lated at 1 GB of storage per hour. Carefully monitoring the amount of data we store is an

important factor in any AI project.

 For more information, refer to the Pinecone Python SDK documentation at https://

docs.pinecone.io/reference/python-sdk.

https://docs.pinecone.io/reference/python-sdk
https://docs.pinecone.io/reference/python-sdk

Chapter 3 93

•	 Serverless write operations units: Measures the resources consumed by write operations

to the Pinecone database that contains our index.

•	 Serverless read operations units: Measures the resources consumed by read operations.

You can download detailed information on your consumption by going to your Pinecone account,

selecting Usage, and then clicking on the Download button, as shown here:

Figure 3.4: Downloading Pinecone usage data

The download file is in CSV format and contains a detailed account of our Pinecone us-

age, such as BillingAccountId (account identifier), BillingAccountName (account name),

OrganizationName (organization name), OrganizationId (organization ID), ProjectId (proj-

ect identifier), ProjectName (project name), ResourceId (resource identifier), ResourceName

(resource name), ChargePeriodStart (charge start date), ChargePeriodEnd (charge end date),

BillingPeriodStart (billing start date), BillingPeriodEnd (billing end date), SkuId (SKU iden-

tifier), SkuPriceId (SKU price ID), ServiceName (service name), ChargeDescription (charge de-

tails), CloudId (cloud provider), RegionId (region), Currency (currency type), PricingQuantity

(usage quantity), PricingUnit (usage unit), ListCost (listed cost), EffectiveCost (calculated

cost), BilledCost (final cost), and Metadata (additional data).

We will now check whether the index we selected exists or not. The program imports the pinecone

and time classes to insert a sleep time before checking whether the index exists:

import time

import pinecone

check if index already exists (it shouldn't if this is first time)

if index_name not in pc.list_indexes().names():

If the index exists, the following code will be skipped to avoid creating duplicate indexes. If not,

an index is created:

 # if does not exist, create index

 pc.create_index(

 As AI slowly enters its industrial age, straying away from the initial excitement of the

early 2020s, continuous monitoring of these metrics becomes increasingly critical.

Integrating Dynamic RAG into the GenAISys94

 index_name,

 dimension=1536, # dimension of the embedding model

 metric='cosine',

 spec=spec

)

 # wait for index to be initialized

 time.sleep(1)

The parameters are as follows:

•	 index_name, which is the name of our Pinecone index, genai-v1

•	 dimension=1536, the dimensionality of the embedding vectors

•	 metric='cosine', which sets the distance metric for similarity searches to cosine sim-

ilarity

•	 spec=spec, which defines the region and the serverless specification we defined previously

for the cloud services

•	 time.sleep(1), which makes the program wait to make sure the index is fully created

before continuing

If the index has just been created, the output shows its details with total_vector_count set to

0 (if you see a number other than 0, the notebook has likely already been run):

{'dimension': 1536,

 'index_fullness': 0.0,

 'namespaces': {},

 'total_vector_count': 0}

If the index already exists, the statistics will be displayed, including index_fullness to monitor

the space used in your index pod from 0 to 1:

Index stats

{'dimension': 1536,

 'index_fullness': 0.0,

 'namespaces': {'genaisys': {'vector_count': 3}},

 'total_vector_count': 3}

Chapter 3 95

In this case, we haven’t populated the index yet. We can connect to the index we just created and

display its statistics before populating it:

connect to index

index = pc.Index(index_name)

view index stats

index.describe_index_stats()

The output displays the information, confirming that we are connected:

{'dimension': 1536,

 'index_fullness': 0.0,

 'namespaces': {'genaisys': {'vector_count': 0}},

 'total_vector_count': 0}

The selected embedding model must match Pinecone’s index dimension (1536). We will create

the parameters of a Pinecone index interactively when we begin working on use cases in Chapter

5. Here, we are using embedding_model="text-embedding-3-small with its 1,536 dimensions,

which matches the dimension of the Pinecone index.

Note also that the 'genaisys' namespace we initialized is taken into account. This ensures that

when we upsert the scenarios we designed, they will not be confused with the classical data that

is in another namespace of the same index. We are now ready to upsert the data to our Pinecone

index.

Upserting instruction scenarios into the index
Upserting embedded chunks into a Pinecone index comes with a cost, as explained at the begin-

ning of this section. We must carefully decide which data to upsert. If we upsert all the data, we

might do the following:

•	 Overload the index and make retrieval challenging, be it instruction scenarios or classical

data

•	 Drive up the cost of write and read operations

•	 Add more noise than is manageable and confuse the retrieval functions

Integrating Dynamic RAG into the GenAISys96

If we choose not to upsert the data, we have two options:

•	 Querying in real time in memory: Loading chunked, embedded data into memory and

querying the information in real time could alleviate the data store and be a pragmatic

way to deal with ephemeral information we don’t need to store, such as the daily weather

forecast. However, we must also weigh the cost/benefit of this approach versus upserting

at each step for the use cases we’ll be working on starting from Chapter 5.

•	 Fine-tuning data: This comes with the cost of building training datasets, which requires

human and computing resources. In the case of fast-moving markets, we might have to

fine-tune regularly, which entails high investments. The cost/benefit will be up to the

project management team to consider. A cost-benefit analysis of fine-tuning versus RAG

will be explored in Chapter 5.

We first initialize the libraries and start a timer to measure how long it takes to run the script:

import pinecone

import time

import sys

start_time = time.time() # Start timing before the request

The program must then calculate the maximum size of the batch we send to Pinecone. It is set to

400,000 bytes, or 4 MB, to play it safe. If the limit is reached, the batch size is returned:

Function to calculate the size of a batch

def get_batch_size(data, limit=4000000): # limit set to 4MB to be safe

 total_size = 0

 batch_size = 0

 for item in data:

 item_size = sum([sys.getsizeof(v) for v in item.values()])

 if total_size + item_size > limit:

 break

 total_size += item_size

 batch_size += 1

 return batch_size

We now need an upsert function that takes the batch size into account when called:

Upsert function with namespace

def upsert_to_pinecone(batch, batch_size, namespace="genaisys"):

 """

 Upserts a batch of data to Pinecone under a specified namespace.

Chapter 3 97

 """

 try:

 index.upsert(vectors=batch, namespace=namespace)

 print(

 f"Upserted {batch_size} vectors to namespace '{namespace}'."

)

 except Exception as e:

 print(f"Error during upsert: {e}")

Note that we will upsert the instruction scenarios into the namespace, genaisys, within the

Pinecone index. We can now define the main batch upsert function:

def batch_upsert(data):

The function begins by determining the total length of the data and then prepares batches that

match the batch size that it will calculate with the get_batch_size function. Then, it creates a

batch and sends it to the upsert_to_pinecone function we defined:

Function to upsert data in batches

def batch_upsert(data):

 total = len(data)

 i = 0

 while i < total:

 batch_size = get_batch_size(data[i:])

 batch = data[i:i + batch_size]

 if batch:

 upsert_to_pinecone(batch, batch_size, namespace="genaisys")

 i += batch_size

 print(f"Upserted {i}/{total} items...") # Display current
progress

 else:

 break

 print("Upsert complete.")

In production, we would typically exit on error, but for this educational notebook,

printing helps us observe without stopping execution.

Integrating Dynamic RAG into the GenAISys98

When the upsert is completed, the output will display a success message, signaling that we are

ready to prepare the upsert process. A Pinecone index requires an ID that we will now create:

Generate IDs for each data item

ids = [str(i) for i in range(1, len(chunks) + 1)]

Once each embedded chunk has an ID, we need to format the data to fit Pinecone’s index structure:

Prepare data for upsert

data_for_upsert = [

 {"id": str(id), "values": emb, "metadata": {"text": chunk}}

 for id, (chunk, emb) in zip(ids, zip(chunks, embeddings))

]

The data is now formatted with an ID, values (embeddings), and metadata (the chunks). Let’s

call the batch_upsert function that will call the related functions we created:

Upsert data in batches

batch_upsert(data_for_upsert)

When the upserting process is finished, the number of vectors upserted to the namespace and

the time it took are displayed:

Upserted 3 vectors to namespace 'genaisys'.

Upserted 3/3 items...

Upsert complete.

Upsertion response time: 0.45 seconds

We can also display the statistics of the Pinecone index:

#You might have to run this cell after a few seconds to give Pinecone

#the time to update the index information

print("Index stats")

print(index.describe_index_stats(include_metadata=True))

 Note that you might have to wait a few seconds to give Pinecone time to update

the index information.

Chapter 3 99

The output displays the information:

Index stats

{'dimension': 1536,

 'index_fullness': 0.0,

 'namespaces': {'genaisys': {'vector_count': 3}},

 'total_vector_count': 3}

The information displayed is as follows:

•	 'dimension': 1536: Dimension of the embeddings.

•	 'index_fullness': 0.0: A value between 0 and 1 that shows how full the Pinecone index

is. We must monitor this value to optimize the data we are upserting to avoid having to

increase the size of the storage capacity we are using. For more information, consult the

Pinecone documentation at https://docs.pinecone.io/guides/get-started/overview.

•	 'namespaces': {'genaisys': {'vector_count': 3}}: Displays the namespace and

vector count.

•	 'total_vector_count': 3}: Displays the total vector count in the Pinecone index.

We are now ready to upload the classical data into its namespace.

Upserting classical data into the index
Building a GenAISys involves teams. So that each team can work in parallel to optimize production

times, we will upsert the classical data in a separate program/notebook. One team can work on

instruction scenarios while another team works on gathering and processing data.

Open Pinecone_RAG.ipynb. We will be reusing several components of the Pinecone_instruction_

scenarios.ipynb notebook built in the Building a dynamic Pinecone index section of this chapter.

Setting up the environment is identical to the previous notebook. The Pinecone index is the same,

genai-v1. The namespace for source-data upserting is data01, as we’ve already established in

earlier sections, to make sure the data is separated from the instruction scenarios. So, the only

real difference is the data we load and the chunking method. Let’s get into it!

Data loading and chunking
This section embeds chunks using the same process as for instruction scenarios in Pinecone_

instruction_scenarios.ipynb. However, this time, GPT-4o does the chunking. When importing

lines of instruction scenarios, we wanted to keep the integrity of the scenario in one chunk to

be able to provide a complete set of instructions to the generative AI model. In this case, we will

leverage the power of generative AI and chunk raw text with GPT-4o.

https://docs.pinecone.io/guides/get-started/overview

Integrating Dynamic RAG into the GenAISys100

We begin by downloading data, not scenarios, and setting the path of the file:

download("Chapter03","data01.txt")

Load the CSV file

file_path = '/content/data01.txt'

Now, the text file is loaded as one big chunk in a variable and displayed:

try:

 with open(file_path, 'r') as file:

 text = file.read()

 text

except FileNotFoundError:

 text = "Error: File not found. Please check the file path."

print(text)

You can comment print(text) or only print a few lines. In this case, let’s verify that we have

correctly imported the file. The output shows that we did:

The CTO was explaing that a business-ready generative AI system (GenAISys)
offers functionality similar to ChatGPT-like platforms…

The text contains a message from the CTO of the company whose data we are uploading to our

custom RAG database. A company might have thousands of such internal messages—far too

many (and too volatile) to justify model fine-tuning. Storing only the key chunks in Pinecone

gives us searchable context without flooding the index with noise.

The text variable is not ready yet to be chunked by GPT-4o. The first step is to create an OpenAI

instance and give the GPT-4o model instructions:

Import libraries

from openai import OpenAI

Initialize OpenAI Client

client = OpenAI()

Function to chunk text using GPT-4o

def chunk_text_with_gpt4o(text):

 # Prepare the messages for GPT-4o

 While a production application would typically exit on a critical FileNotFoundError,

for this educational notebook, printing the error allows us to observe the outcome

without interrupting the learning flow.

Chapter 3 101

 messages = [

 {"role": "system", "content": "You are an assistant skilled at
splitting long texts into meaningful, semantically coherent chunks of 50-
100 words each."},

 {"role": "user", "content": f"Split the following text into
meaningful chunks:\n\n{text}"}

]

Now we send the request to the API:

 # Make the GPT-4o API call

 response = client.chat.completions.create(

 model="gpt-4o", # GPT-4o model

 messages=messages,

 temperature=0.2, # Low randomness for consistent chunks

 max_tokens=1024 # Sufficient tokens for the chunked response

)

We need to keep an eye on the max_tokens=1024 setting: GPT-4o will stop generating once it hits

that limit. For very large documents, you can stream the text in smaller slices—then let GPT-4o

refine each slice. We can also use ready-made chunking functions that will break the text down

into optimized chunks to obtain more nuanced and precise results when retrieving the data. How-

ever, in this case, let’s maximize the usage of GPT-4o; we send the entire file in one call with a

low temperature so we can watch the model partition a real-world document from end to end.

Now we can retrieve the chunks from the response, clean them, store them in a list of chunks,

and return the chunks variable:

 # Extract and clean the response

 chunked_text = response.choices[0].message.content

 chunks = chunked_text.split("\n\n") # Assume GPT-4o separates chunks
with double newlines

 return chunks

Now, we can call the chunking function. We don’t have to display the chunks and can comment

the code in production. However, in this case, let’s verify that everything is working:

Chunk the text

chunks = chunk_text_with_gpt4o(text)

Display the chunks

print("Chunks:")

for i, chunk in enumerate(chunks):

Integrating Dynamic RAG into the GenAISys102

 print(f"\nChunk {i+1}:")

 print(chunk)

The output shows that the chunks were successfully created:

Chunks:

Chunk 1:

The CTO was explaining that …

Chunk 2:

GenAISys relies on a generative AI model…

Chunk 3:

We defined memoryless, short-term, long-term…

The remaining embedding and upsert steps are identical to those in Pinecone_instruction_

scenarios.ipynb—just remember to use namespace="data01" when writing the vectors. After

that, we’re ready to query the index and verify retrieval.

Querying the Pinecone index
As you know, our vector store now has two logical areas—genaisys for instruction scenarios and

data01 for classical data. In this section, we’ll query each area interactively to prove the retrieval

code works before we wire it into the multi-user interface in Chapter 4. We will query these two

namespaces in the Pinecone index, as shown in Figure 3.5:

Figure 3.5: Generative AI model querying either the instruction scenarios or the data

Chapter 3 103

Open Query_Pinecone.ipynb to run the verification queries. The next steps are the same as those

in the Setting up the environment and Creating the Pinecone index sections, except for two minor

differences:

•	 The namespace is not provided when we connect to the Pinecone index, only its name:

index_name = 'genai-v1'. This is because the querying function will manage the choice

of a namespace.

•	 The Upserting section of the notebook has been removed because we are not upserting

but querying the Pinecone index.

The Query section of the notebook is divided into two subsections. The first subsection contains

the querying functions and the second one the querying requests. Let’s begin with the querying

functions.

Querying functions
There are four querying functions, as follows:

•	 QF1: query_vector_store(query_text, namespace), which receives the query, sends

the request to QF2, and returns the response. It will use QF4 to display the results.

•	 QF2: get_query_results(query_text, namespace), which receives the query from QF1,

sends it to QF3 to be embedded, makes the actual query, and returns a response to QF1.

•	 QF3: get_embedding(text, model=embedding_model), which receives text to embed

from QF2 and sends the embedded text back to QF2.

•	 QF4: display_results(query_results), which receives the results from QF1, processes

them, and returns them to QF1.

We can simplify the representation as shown in Figure 3.6 by creating two groups of functions:

•	 A group with QF1, query_vector_store, and QF4, display_results, in which QF1 queries

the vector store through QF2 and returns the results to display.

Integrating Dynamic RAG into the GenAISys104

•	 A group with QF2, get_query_results, queries the vector store after embedding the query

with QF3, get_embedding, and returns the results to QF1.

Figure 3.6: Querying the vector store with two groups of functions

Let’s begin with the first group of functions.

Querying the vector store and returning results
The first function, QF1, receives the user input:

def query_vector_store(query_text, namespace):

 print("Querying vector store...")

Then, the function calls QF2, query_results:

 # Retrieve query results

 query_results = get_query_results(query_text, namespace)

QF2 then returns the results in query_results, which, in turn, is sent to display_results to

obtain the text and target ID:

 # Process and display the results

 print("Processed query results:")

 text, target_id = display_results(query_results)

 return text, target_id

display_results processes the query results it receives and returns the result along with metadata

to find the text obtained in the metadata of the Pinecone index. When it is found, the function

retrieves the ID:

def display_results(query_results):

 for match in query_results['matches']:

Chapter 3 105

 print(f"ID: {match['id']}, Score: {match['score']}")

 if 'metadata' in match and 'text' in match['metadata']:

 text=match['metadata']['text']

 #print(f"Text: {match['metadata']['text']}")

 target_id = query_results['matches'][0]['id'] # Get the ID
from the first match

 #print(f"Target ID: {target_id}")

 else:

 print("No metadata available.")

 return text, target_id

The text and ID are returned to QF1, query_vector_store, which, in turn, returns the

results when the function is called. Note that for educational purposes, this function assumes

query_results will always contain at least one match with 'metadata' and 'text' fields. Let’s

now see how the query is processed.

Processing the queries
The program queries the Pinecone index with get_query_results with the input text and name-

space provided. But first, the input text must be embedded to enable a vector similarity search

in the vector store:

def get_query_results(query_text, namespace):

 # Generate the query vector from the query text

 query_vector = get_embedding(query_text) # Replace with your method
to generate embeddings

Once the input is embedded, a vector search is requested with the vectorized input within the

namespace specified:

 # Perform the query

 query_results = index.query(

 vector=query_vector,

 namespace=namespace,

 top_k=1, # Adjust as needed

 include_metadata=True

)

Integrating Dynamic RAG into the GenAISys106

Note that k is set to 1 in this example to retrieve a single top result for precision, and also, the

metadata is set to True to include the corresponding text. The results are returned to QF2,que-

ry_results:

 # Return the results

 return query_results

The embedding function is the same as what we used to upsert the data in the Pinecone index:

import openai

client = openai.OpenAI()

embedding_model = "text-embedding-3-small"

def get_embedding(text, model=embedding_model):

 text = text.replace("\n", " ")

 response = client.embeddings.create(input=[text], model=model)

 embedding = response.data[0].embedding

 return embedding

We’re now ready to run two tests: an instruction scenario query (namespace genaisys) and a

source data query (namespace data01).

Retrieval queries
To retrieve an instruction scenario, we will enter a user input and the namespace to let the system

find the closest instruction to perform:

Define your namespace and query text

namespace = "genaisys" # Example namespace

query_text = "The customers like the idea of travelling and learning.
Provide your sentiment."

 Make sure to use the same model to embed queries as you did to embed the data

you upserted so that the embedded input is in the same vector format as the em-

bedded data stored. This is critical for similarity search to make accurate similarity

calculations.

Chapter 3 107

The system should detect the task briefly asked for and return a comprehensive instruction sce-

nario. For that, we’ll call the entry point of the functions, query_vector_store, and display the

output returned:

Call the query function

text, target_id = query_vector_store(query_text, namespace)

Display the final output

print("Final output:")

print(f"Text: {text}")

print(f"Target ID: {target_id}")

The output is satisfactory and is ready to be used in Chapter 4 in a conversational loop:

Querying vector store...

Processed query results:

ID: 2, Score: 0.221010014

Querying response time: 0.54 seconds

Final output:

Text: 200,Sentiment analysis Read the content return a sentiment analysis
nalysis on this text and provide a score with the label named : Sentiment
analysis score followed by a numerical value between 0 and 1 with no + or
- sign and add an explanation to justify the score.

Target ID: 2

The program now retrieves data from the Pinecone index. The query functions are identical since

the namespace is a variable. Let’s just look at the query and output. The query is directed to the

data namespace:

Define your namespace and query text

namespace = "data01" # Example namespace

query_text = "What did the CTO say about the different types of memory?"

The result is printed:

Display the final output

print("Final output:")

print(f"Text: {text}")

print(f"Target ID: {target_id}")

Integrating Dynamic RAG into the GenAISys108

The output is satisfactory:

Querying vector store...

Processed query results:

ID: 3, Score: 0.571151137

Querying response time: 0.45 seconds

Final output:

Text: We defined memoryless, short-term, long-term memory, and cross-topic
memory. For the hybrid travel marketing campaign, we will distinguish
semantic memory (facts) from episodic memory (personal events in time, for
example). The CTO said that we will need to use episodic memories of past
customer trips to make the semantic aspects of our trips more engaging.

Target ID: 3

We have thus populated a Pinecone vector store and queried it. Let’s summarize the implemen-

tation of the Pinecone index before we move on to adding more layers to our GenAISys.

Summary
In this chapter, we pushed our GenAISys project another step forward by moving beyond ordi-

nary RAG. First, we layered expert-written instruction scenarios on top of the source data corpus,

turning a static RAG pipeline into a dynamic framework that can fetch not only facts but also the

exact reasoning pattern the model should follow. The global market is accelerating so quickly that

users now expect ChatGPT-level assistance the moment a need arises; if we hope to keep pace,

our architecture must be flexible, cost-aware, and capable of near-real-time delivery.

We began by laying out that architecture, then introduced the law of diminishing returns to de-

termine when an implicit similarity search is worth its compute bill and when a direct, explicit

call—such as a simple web search—will do the job more cheaply. With the theory in place, we

wrote a program to download, chunk, embed, and upsert the instruction scenarios into a dedicated

namespace inside a Pinecone index. Next, we enlisted GPT-4o to perform the same chunk-and-

embed routine on the source documents, storing those vectors in a second namespace. Once both

partitions were in place, we verified the retrieval layer: a single query function now routes any

prompt to the correct namespace and returns the best match along with its metadata.

With scenarios and data cleanly separated yet instantly searchable, the GenAISys has the retrieval

backbone it needs. In the next chapter, we will plug these components into the conversational

loop and let the system demonstrate its full, business-ready agility.

Chapter 3 109

Questions
1.	 There is no limit to automating all tasks in a generative AI system. (True or False)

2.	 The law of diminishing returns is of no use in AI. (True or False)

3.	 Chunking is the process of breaking data into smaller parts to retrieve more nuanced

information. (True or False)

4.	 There is only one embedding model you should use. (True or False)

5.	 Upserting data to a Pinecone index means uploading data to a database. (True or False)

6.	 A namespace is the name of a database. (True or False).

7.	 A namespace can be used to access different types of data. (True or False)

8.	 Querying the Pinecone index requires the user input to be embedded. (True or False)

9.	 Querying the Pinecone index is based on a metric such as cosine similarity. (True or False)

10.	 The Pinecone index and the query functions are the only components of a GenAISys. (True

or False)

References
•	 OpenAI embeddings documentation: https://platform.openai.com/docs/guides/

embeddings

•	 Pinecone Python SDK documentation: https://docs.pinecone.io/reference/python-

sdk

•	 Pinecone documentation: https://docs.pinecone.io/guides/get-started/overview

Further reading
•	 AI Development Cost: Learn What Makes Developing an AI Solution: https://www.spaceo.

ai/blog/ai-development-cost/

•	
Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name.

Note: Keep your purchase invoice ready before you start.

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://docs.pinecone.io/reference/python-sdk
https://docs.pinecone.io/reference/python-sdk
https://docs.pinecone.io/guides/get-started/overview
https://www.spaceo.ai/blog/ai-development-cost/
https://www.spaceo.ai/blog/ai-development-cost/
http://packtpub.com/unlock

4
Building the AI Controller
Orchestration Interface

Businesses today need to design, produce, and deliver goods and services at a speed never at-

tained before. Responsiveness has become key in nearly every field, from online cloud services

to delivering food, medication, clothing, and so on. Such an event-driven economy produces an

endless stream of tasks, and only an equally event-driven, human-centered generative AI system

(GenAISys) can keep pace.

Human judgment still anchors even the most automated workflows: when fires break out, storms

destroy infrastructure, or supply chains falter, teams—not algorithms alone—must act. An ad-

vanced GenAISys that leaves people out of the loop is a myth. This chapter, therefore, begins by

outlining an architecture that tears down the walls between users and AI to create a collaborative,

multi-user chatbot.

First, we sketch the event-driven GenAISys interface at a high level, showing how the building

blocks from earlier chapters—short-term, episodic, and long-term memory, the multi-turn con-

versational agent, and twin RAG pipelines for instruction scenarios and data—fit together. To

then implement the responsive system, we must code the processes of the GenAISys and then

the conversational agent that will manage the generative AI agent. Once our GenAISys interface

is built, we will run a multi-user, multi-turn conversation with three users working in an online

travel agency. Their online meeting will include a conversational AI agent as a participant.

Building the AI Controller Orchestration Interface112

These users will be able to have an online meeting with or without the AI agent. They will be

able to utilize RAG to find instruction scenarios or simply ask the generative AI agent to answer

a question. By the end of the chapter, we will have a fully working GenAISys interface ready for

the multimodal chain-of-thought extensions in Chapter 5.

In a nutshell, this chapter covers the following topics:

•	 A high-level view of the architecture of an event-driven GenAISys interface

•	 A low-level, hands-on flowchart of the GenAISys interface

•	 Implementing response widgets for inputs, the AI agent, and active users

•	 The chatbot’s event-driven flow in a multi-turn conversation

•	 Multi-user GenAISys conversation with an AI agent as a participant

•	 The response RAG features of the conversational agent

•	 The orchestration capabilities of the GenAISys interface and AI agent

Our first task is to define an event-driven GenAISys interface.

Architecture of an event-driven GenAISys interface
Our event-driven GenAISys interface integrates the functionality we built in the previous chap-

ters. The interface will leverage the flexibility of IPython widgets to create a reactive event-driven

environment in which the following apply:

•	 The high-level tasks will be event-driven, triggered by user inputs

•	 Generative AI tasks will trigger generative AI agent functions

We will first examine the program we are building at a high level, as represented in Figure 4.1:

Chapter 4 113

Figure 4.1: High-level architecture of the GenAISys interface

Let’s go through the functions we have already built in the previous chapters and also list the key

ones we are adding in this chapter:

•	 I1 – AI controller: This chapter’s main new component is the generative AI Python in-

terface with responsive widgets, which will be run as an AI controller and orchestrator

•	 I2 – Multi-user chatbot: The chat surface through which several users interact concur-

rently

•	 F1 – Generative AI model: Inherited from all the previous chapters, especially Chapter 3,

in which we ran generative AI calls with GPT-4o

•	 F2 – Memory retention: Inherited from Chapter 1, which introduced different types of

memory

•	 F3 – Modular RAG: The instruction-and-data pipelines inherited from Chapter 3

•	 F4 – Multifunctional capabilities: Semantic and sentiment analysis from Chapters 2 and

3, to be expanded in Chapter 5 with image, audio, web search, and ML features

To build this architecture, we will do the following:

•	 Build the processes of an event-driven GenAISys interface

•	 Implement the conversational agent with GPT-4o and an OpenAI embedding model

•	 Run a multi-user, multi-turn session exploring the main features of the GenAISys AI con-

troller and orchestrator

Building the AI Controller Orchestration Interface114

Let’s first explore scenario-driven task execution.

Building the processes of an event-driven GenAISys
interface
Let’s begin by building the GenAISys interface shown in Figure 4.2, using IPython widgets to cre-

ate a responsive, event-driven environment. The result will be a dynamic multi-user chat surface

with drop-down menus, text-input fields, and a checkbox—everything needed for real-time

collaboration between people/users and the generative AI agent.

Open Event-driven_GenAISys_framework.ipynb notebook within the Chapter04 directory on

GitHub (https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/

tree/main). Setting up the environment is the same as described in the previous chapters:

•	 To set up OpenAI, refer to Chapter 1, including the custom OpenAI API call used here:
openai_api.make_openai_api_call

 The decision to present the main components of the GenAISys architecture (in this

chapter and the next) without arrows is a deliberate choice designed to convey a core

concept: modularity and architectural flexibility. The figure is not a rigid blueprint but

rather a conceptual toolkit. It shows you the powerful components at your dispos-

al—I1. AI controller, I2. Multi-user chatbot, F1. Generative AI model, F2. Memory

retention, F3. Modular RAG, and F4. Multifunctional capabilities—as independent,

interoperable blocks. This empowers you, illustrating that you are free to design your

own system architecture. For instance, a user could choose to run some functional

components, such as F4. Multifunctional capabilities, as independent, distributed

agents that are called upon by the controller. Alternatively, they could implement a

completely different interface or even run the system headlessly without one.

However, the focus of this architecture is on demonstrating a human-centered Ge-

nAISys. In this configuration, I1. AI controller (the generative AI IPython interface)

serves as the central hub and orchestrator. This human-centered architecture guar-

antees full control and transparency. This is essential to build trust in risk-averse

corporate environments. The control flow, while not drawn with arrows, is implicit:

user interactions from I2. Multi-user chatbot are managed by the AI controller,

which then strategically delegates tasks to the various functional components (F1

to F4) to generate responses, access memory, perform RAG, or execute specific func-

tions. This approach provides a clear, stable, and explainable pathway to building a

business-ready generative AI system.

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main

Chapter 4 115

•	 Refer to Chapter 3 for setting up Pinecone, connecting to the index, and querying it

An additional package (ipython) is required for the notebook environment. IPython is pre-in-

stalled in Google Colab; if needed, install it using the following:

!pip install ipython

The code we’ll build demonstrates core concepts such as event-driven interactions, dynamic

content updating, and modular function organization. By the end of this section, you will have

learned how to bridge the gap between AI functionality and end user engagement.

Figure 4.2: The flowchart of an event-driven GenAISys interface

Building the AI Controller Orchestration Interface116

The main groups of functions required to build this interface are the following:

•	 Initializing widgets

•	 Handling user input and selection changes

•	 Processing chat messages, including triggering functions and exit commands

•	 Generating and processing AI responses

•	 Updating the UI dynamically

•	 Saving the conversation history

Before diving into the code from a developer’s perspective, let’s keep the user’s point of view

in mind. We must build an intuitive interface that can seamlessly execute the flow outlined in

Figure 4.2.

Figure 4.3: GenAISys from a user’s perspective

The UI contains only three widgets: an input box for entering prompts, a drop-down list for se-

lecting active users, and a checkbox for activating and deactivating the conversational AI agent.

Let’s walk through the process of setting up and running this interactive GenAISys environment.

Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 4 117

1. Start
The program starts from the Multi-user conversation with the agent as a participant cell. We first

import the modules and libraries we need, starting with IPython:

from IPython.display import display, HTML, clear_output

Let’s go through each functionality we will be implementing in Google Colab:

•	 display and HTML to display objects such as widgets, images, and rich HTML outputs

•	 clear_output to clear the output of a cell

Then, we import ipywidgets managed by the Jupyter project:

from ipywidgets import Dropdown, Text, Checkbox, VBox, Layout

ipywidgets is the core component of the interactive interface in this notebook, in which we will

use the following widgets:

•	 Dropdown: A drop-down widget to select a value from a list of options

•	 Text: A widget for text input from a user

•	 Checkbox: A widget for Boolean checked/unchecked input

•	 Vbox: A container widget to arrange child widgets in a vertical box layout

•	 Layout: To customize the style of the widgets with layout properties such as width, height,

and margin

Finally, we import JSON, used to store multi-user conversation histories:

import json

We then initialize the conversation histories for all users, define the first active user, and set the

active conversation to True:

Initialize conversation histories for all users and active user

user_histories = {"User01": [], "User02": [], "User03": []}

active_user = "User01" # Default user

conversation_active = True

Building the AI Controller Orchestration Interface118

We are thus, from the start, initializing a multi-user collaborative GenAISys in which the users

can be human prompts and system prompts. For example, a “user” could be a message from an-

other system and triggered in this interface by an event that reads pending messages. The user

list can be expanded, stored in variables, or utilized in any user management system that suits a

project’s needs, including access rights, passwords, and roles for various applications. Next, we

initialize the widgets themselves.

2. Initialize widgets
The code now sets up the Dropdown, Text, and Checkbox widgets we need. The widgets are also

linked to event handlers. The Dropdown widget for the users defines the three users initialized at

the start of the conversation:

Create a dropdown to select the user

user_selector = Dropdown(

 options=["User01", "User02", "User03"],

 value=active_user,

 description='User:',

 layout=Layout(width='50%')

)

The selector has four parameters:

•	 options lists the available users that can be expanded and can access any user manage-

ment repository as needed for your project.

•	 value determines the active user. The program started with User01 as the initial user. This

can be automated when an authorized user first connects to the GenAISys.

•	 description provides a label for the drop-down list that will be displayed.

•	 layout sets the width of the widget that will be displayed.

Note that we are creating a core GenAISys, not a platform. The goal is to grasp the inner workings

of a GenAISys. Once it works as expected, we can then add the classical layers of user management

(names, roles, and rights). In this case, we are remaining focused on the flexible core concepts

of GenAISys, not how they will be encapsulated in a specific platform and framework. We are

learning how to be generative AI agentic architects, not operators of a specific framework.

Chapter 4 119

The next step is to insert an event handler. In this case, it is an event listener that will detect

when the value of user_selector changes. When another user is selected, the on_user_change

function is automatically called, and value becomes the new user:

user_selector.observe(on_user_change, names='value')

This dynamic change in users within a GenAISys conversation represents a major evolution from

the one-on-one chatbots. It introduces a whole new dimension to collaborative teamwork with

AI as a co-participant.

The second widget to activate is the input widget:

Create the input box widget

input_box = Text(placeholder="Type your message here or type 'exit' to end
the conversation.", layout=Layout(width='100%'))

The input can be any text and will occupy 100% of the UI layout. The conversation ends when

a user enters exit or quit. When the text is typed and the Enter button is pressed, the event

handler takes over:

input_box.on_submit(handle_submit) # Attach the on_submit event handler

on_submit is a method of the input_box widget. handle_submit is a callback function that we

can write as we wish and will be described later in this section.

The third widget is the checkbox for the AI conversational agent:

Create a checkbox to toggle agent response

agent_checkbox = Checkbox(

 value=True,

 description='Agent',

 layout=Layout(width='20%')

)

The checkbox displays the description label, which is an agent in this case. The layout will occupy

20% of the UI. If value is set to True, then the conversational AI agent will be activated. We will

build the AI agent in the Conversational agent section of this chapter. The AI agent will also be

event-driven.

The UI box is now ready to be displayed.

Building the AI Controller Orchestration Interface120

3. Display the UI
The UI container widget now combines the three event-driven widgets we defined in VBox (V

stands for vertical; i.e., in a vertical box). The three widgets are in brackets:

Display the initial interface

display(

 VBox(

 [user_selector, input_box, agent_checkbox],

 layout=Layout(

 display='flex', flex_flow='column',

 align_items='flex-start', width='100%'

)

))

The layout is then defined:

layout=Layout(

 display='flex', flex_flow='column',

 align_items='flex-start', width='100%'

)))

The parameters of this responsive UI are the following:

•	 display='flex' activates the CSS flexbox model for layouts dynamically without spec-

ifying the sizes of the items

•	 flex_flow='column' arranges the child widgets vertically

•	 align_items='flex-start' aligns the widgets to the start (left side) of the UI (left side)

container

•	 width='100%' makes the container take up the full width of the available space

With that, the UI is ready. We can choose to begin with any of the three widgets. The user selector

can be run before the input, as well as the AI agent checkbox. In this case, the user selector was

set to a default value, User01, and the AI agent checkbox was set to the default value, True.

The three widgets and their processes can be built into any classical web or software interface,

depending on your project’s needs. Since there is no default value for the input, let’s continue

with the input widget.

Chapter 4 121

4. Input box event
The input text is managed by the UI described in the previous section, which triggers input_

box.on_submit(handle_submit) when a user enters text. In turn, the submit method calls the

handle_submit function:

Function to handle the submission of the input

def handle_submit(sender):

 user_message = sender.value

 if user_message.strip():

 sender.value = "" # Clear the input box

 chat(user_message)

Now, the function does three things:

•	 user_message = sender.value processes the text received from the input widget

•	 if user_message.strip() checks whether there is a message and clears the input box

for the next input with sender.value = "" # Clear the input box

•	 chat(user_message) is called if there is a message

chat(user_message) is the next process and a key event processing hub for the GenAISys. Let’s

go through it.

5. chat(user_message) function
The chat(user_message) function is an orchestrator component of our event-driven GenAISys. It

should remain human-centered for critical human control. Once the system has gained the trust

of the users and after careful consideration, some of the actions it manages can be triggered by

system messages. The orchestrator contains important decisions when it processes the user mes-

sage it receives from the handle_submit(sender) function. It encapsulates several choices and

functions, as represented in Figure 4.2: deciding whether to continue the conversation, appending

or saving the conversation history to a file, determining whether to call the AI conversational

agent, and updating the UI display.

It first inherits the global status of the conversation variable (conversation_active = True) we

initialized at the start of the conversation (in node 1 of Figure 4.2):

Function to handle user input and optional bot response

def chat(user_message):

 global conversation_active

Building the AI Controller Orchestration Interface122

It continues to determine whether the multiple-turn conversation is over or not by checking

whether the user has exited or quit the conversation (see 6 in Figure 4.2):

 if user_message.lower() in ['exit', 'quit']:

Let’s see what happens if the user chooses to exit the conversation.

6. If ‘exit’ is chosen
Suppose the user enters exit or quit; then the conversation_active variable we set to True at

the start of the conversation (in node 1 of Figure 4.2) will now be set to False. The system now

knows that there is no need to update the display anymore. It then tells the clear_output function

to wait until the next conversation turn to clear the output to avoid flickering effects:

clear_output(wait=True)

The exit process continues by displaying a message signaling the end of the conversation and

indicating that the conversation history is being saved:

display(HTML("<div style='color: red;'>Conversation ended. Saving
history...</div>"))

The exit process ends by calling the save function of the conversation, which will save all history

to a file (see node 7 in Figure 4.2):

save_conversation_history()

The conversation is thus saved at the end of the session for further use (for a new session or a

meeting summary), as shown in node 7 of Figure 4.2:

Function to save conversation history to a file

def save_conversation_history():

 filename = "conversation_history.json" # Define the filename

 with open(filename, 'w') as file:

 json.dump(user_histories, file, indent=4) # Write the user
histories dictionary to the file in JSON format

 display(HTML(f"<div style='color: green;'>Conversation history
saved to {filename}.</div>"))

Now, let’s go through the process when the user(s) chooses to continue the conversation.

Chapter 4 123

7. If user(s) continue the conversation
If the user input does not contain exit or quit, then the multi-turn, multi-user conversation will

continue. We have some big decisions to make with this function, however. Do we append it to

each user request or not? If we append it to each user request, at some point, the context window

will be complete, but the number of tokens we send through the API will increase processing

time and costs.

The first step is to append the history of the conversation we initialized at the start (in node 1 of

Figure 4.2):

Append user message to the active user’s history

user_histories[active_user].append(

 {“role”: “user”, “content”: user_message}

)

So, in the hybrid scenario of this notebook, at this point, we will save the user history in memory

until the end of the session, and we will thus augment each user’s input with their input history,

as seen in node 11 of Figure 4.2. If the user input does not contain exit or quit, then the multi-

turn, multi-user conversation will continue. It will append the user message to the history (in

node 8 of Figure 4.2) of the user.

However, if we don’t want to append a user request to it but still want to keep a record of the

entire conversation for context, we can also summarize the conversation at the midpoint or the

end. If we summarize it during the conversation, we can add a function to append it to the user

input each time. If we summarize after the end of a session, we can continue with a new, fresh

session with a summary of the previous session’s history.

In this notebook, we will implement a hybrid short- and long-term memory process. We can

continue the conversation by not entering 'quit' or 'exit'. Now, the chat(user_message)

function will check the conversational agent’s checkbox value:

if agent_checkbox.value:

This verification is shown in node 9 in Figure 4.2. If the checkbox is checked, then the functions

we created in the previous chapters are activated by calling chat_with_gpt:

 response = chat_with_gpt(user_histories[active_user],

 user_message)

Building the AI Controller Orchestration Interface124

Once the response is returned, it is appended to the history of the response described previously:

 user_histories[active_user].append(

 {“role”: “assistant”, “content”: response}

)

We now have an entry-point memory framework. The program then calls update_display(),

another key function that is shown in node 14 of Figure 4.2. If the agent checkbox is checked,

chat_with_gpt will be called.

8. Generate bot response
The chat_with_gpt function assembles the work we did in the previous chapters to create a

conversational AI agent with the Pinecone-based RAG functionality. We will fully implement

this integration in the Conversational agent section of this chapter.

chat_with_gpt orchestrates the AI conversational agent by providing information, enabling it to

be dynamic and responsive. The user history of this conversation and the user message are sent

to the chat_with_gpt conversational agent function:

response = chat_with_gpt(user_histories[active_user], user_message)

Once the response is returned, the update_display function is called from chat(user_message).

9. Update display
The update_display function refreshes the UI with the updated conversation history and also

displays the status of the widgets. It first tells the UI to wait until a new output arrives by setting

wait to True:

def update_display():

 clear_output(wait=True)

The function then filters and displays the active user’s history (see node 15 of Figure 4.2):

 for entry in user_histories[active_user]: # Show only the active
user's history

 if entry['role'] == 'user':

 display(HTML(f"<div style='text-align: left; margin-left:
20px; color: blue;'>{active_user}: {entry['content']}</
div>"))

Chapter 4 125

 elif entry['role'] == 'assistant':

 display(HTML(f"<div style='text-align: left; margin-left:
20px; color: green;'>Agent: {entry['content']}</div>"))

If the conversation is active, the UI VBox is displayed along with the status of the widgets:

 if conversation_active:

 display(VBox([user_selector, input_box, agent_checkbox])) # Keep
input box, selector, and checkbox visible if active

The input box is cleared, the agent checkbox has been checked independently by the user, and the

system has verified its status. The active user will be displayed based on the independent decision

of the user. In this case, the active user, active_user, who was initialized at the start (1) of the

conversation, remains the same. If the user changed, the on_user_change drop-down event (13)

would have been triggered by the observe method of the user_selector widget:

user_selector.observe(on_user_change, names='value')

In that case, user_selector.observe will independently call the update active_user function

(14) and first make sure that the active user is a global variable:

def on_user_change(change):

 global active_user

Then, it will make the new user the active user:

 active_user = change['new']

Finally, it will call the update_display function we built in this subsection:

 update_display()

Now that we have our dynamic UI and event-driven functions in place, let’s implement the con-

versational agent logic called by chat_with_gpt.

Conversational agent
We implemented an AI conversational agent in Chapters 1 and 2 and built the query Pinecone

functionality in Chapter 3. Go to the Conversational agent section of the notebook. If needed, take

the time to revisit those chapters before proceeding. In this section, it’s time we integrate those

components, preparing our GenAISys conversational agent for multi-user sessions.

Building the AI Controller Orchestration Interface126

We begin by importing OpenAI and initializing the client:

from openai import OpenAI

Initialize the OpenAI client

client = OpenAI()

Next, we make a decision to store or not to store all of the user’s conversation history for each

call to optimize context window size for cost and clarity:

user_memory = True # True=User messages are memorized False=User messages
are not memorized

The memory setting should be strategically monitored in production environments. For example,

here we set user_memory to True, but we avoid applying it during RAG queries, as historical con-

text could confuse the Pinecone similarity searches. We then define the chat_with_gpt function,

which is called in node 10 of Figure 4.2:

def chat_with_gpt(messages, user_message):

The function first searches the input text for a keyword to trigger a RAG retrieval from the Pine-

cone index as implemented in Query_Pinecone.ipynb and described in Chapter 3. The code first

determines the namespace:

 try:

 namespace=""

 if "Pinecone" in user_message or "RAG" in user_message:

 # Determine the keyword

 if "Pinecone" in user_message:

 namespace="genaisys"

 elif "RAG" in user_message:

 namespace="data01"

 print(namespace)

…

If the user message contains “Pinecone,” the query will target the genaisys namespace, which

contains the instruction scenarios. The genaisys namespace implementation departs from static

data retrieval and takes us into agentic, dynamic decision-making to trigger an instruction or a task.

If the user message contains “RAG,” the query will target the data01 namespace, which contains

static data. The queries and content of the Pinecone index are those implemented in Chapter 3:

 #define query text

 query_text=user_message

Chapter 4 127

 # Retrieve query results

 query_results = get_query_results(query_text, namespace)

 # Process and display the results

 print("Processed query results:")

 qtext, target_id = display_results(query_results)

 print(qtext)

Once the query result is returned, we append the user message to it to augment the input:

 #run task

 sc_input=qtext + " " + user_message

 mrole = "system"

 mcontent = "You are an assistant who executes the tasks you are
asked to do."

 user_role = "user"

The message parameters and the OpenAI API call are described in the Setting up the environment

section of Chapter 1. The OpenAI response is stored in task response:

 task_response = openai_api.make_openai_api_call(

 sc_input,mrole,mcontent,user_role

)

 print(task_response)

The response returned by the OpenAI API call, augmented with the result of the Pinecone query,

is stored in aug_output:

 aug_output=namespace + ":" +task_response

If the user message does not contain a keyword to trigger the RAG function, the user request will

be sent directly to the OpenAI API call, and the response will be stored in aug_output. However,

the system must first check whether user_memory is True or not. The system must also extract

the text content of user_message:

 else:

 if user_memory:

 # Extract ALL user messages from the conversation history

 user_messages_content = [

 msg["content"] for msg in messages

 if msg["role"] == "user" and "content" in msg

]

Building the AI Controller Orchestration Interface128

 # Combine all extracted user messages into a single string

 combined_user_messages = " ".join(user_messages_content)

 # Add the current user_message to the combined text

 umessage = f"{combined_user_messages} {user_message}"

In this case, umessage now contains a concatenation of the conversation history of the active user

extracted and stored in combined_user_messages and the user message itself in user_message.

The generative AI model now has complete context about the dialogue with this user.

In some cases, we might decide to ignore the conversation history altogether. In that scenario, we

set the user_memory parameter to False, and the system disregards prior exchanges:

 else:

 umessage = user_message

The umessage variable is now ready to be sent directly to the generative AI model:

 mrole = "system"

 mcontent = "You are an assistant who executes the tasks you are
asked to do."

 user_role = "user"

 task_response =openai_api.make_openai_api_call(

 umessage,mrole,mcontent,user_role

)

 aug_output=task_response

 The strategy for managing conversation history will depend heavily on each re-

al-world use case. For example, we might choose to extract the history of all users

involved in a session or only specific users. Alternatively, a team could decide to

use a single shared username throughout an entire conversation. Generally, the

best practice is to organize workshops with end users to define and configure the

conversation-memory strategies that best fit their workflow.

Chapter 4 129

The response from the OpenAI API call is then returned to the chat_with_gpt function (in node

10 of Figure 4.2):

 # Return the augmented output

 return aug_output

If the OpenAI API call fails, an exception is raised and returned:

 except Exception as e:

 # Return the error message in case of an exception

 return f"An error occurred: {str(e)}"

And with that, we have assembled the generative AI functionalities developed across the previ-

ous three chapters. At this stage, we’ve built a responsive GenAISys interface and integrated a

generative agent, together forming a cohesive AI controller and orchestrator. Let’s now put our

GenAISys into motion.

Multi-user, multi-turn GenAISys session
We now have a responsive, event-driven GenAISys capable of executing multiple tasks in diverse

ways, as illustrated in Figure 4.4. We will explore the flexibility of this GenAISys interface we

built using IPython and assemble the OpenAI and Pinecone components from previous chapters.

Figure 4.4: Summing up the components we have built and assembled in this chapter

Since the functions within GenAISys are event-driven, a user (human or system) or a group of

users can leverage this framework to address multiple cross-domain tasks. The system is hu-

man-centric, creating a collaborative, frictionless environment between humans and a generative

AI agent. Importantly, there is no competition between humans and AI in this framework. Teams

Building the AI Controller Orchestration Interface130

can maintain human social relationships with co-workers while using the GenAISys to boost their

performance and productivity exponentially. This human-centric approach is one I have always

advocated throughout my decades of experience providing AI-driven automation solutions for

global corporations, mid-sized businesses, and smaller organizations. When teams adopt AI as

a collaborative tool rather than a competitor, it fosters a positive atmosphere that leads to quick

wins—demonstrating the combined effectiveness of teamwork and technology.

If we look deeper into how the GenAISys framework can be leveraged in teamwork scenarios, we

can establish several fundamental sequences of events typically needed in real-world projects:

a.	 User selection => Input => Agent checked => RAG instruction => GenAI agent => Output

b.	 User selection => Input => Agent checked => RAG data => GenAI agent => Output

c.	 User selection => Input => Agent checked => User history => GenAI agent => Output

d.	 User selection => Input => Agent checked => No user history => GenAI agent => Output

e.	 User selection => Input => Agent unchecked => Output

These basic sequences constitute a set of sequences, S:

To achieve a goal for a single user or a group of users, the sequences can be assembled as follows:

•	 {a, b}: Running a sentiment analysis with RAG, followed by the retrieval of an episodic

memory of a past meeting.

•	 {d, e}: Running an OpenAI API request and then making a comment for other users. The

novelty in this case is that the AI agent remains a co-worker in a team and sometimes

doesn’t express itself, allowing the team to ponder the ideas it suggested.

These sequences can be arranged into longer session flows as required by the specific tasks and

scenarios. Because sequences can repeat themselves, we have an indefinite number of possible

dynamic combinations. For instance, here’s a glimpse into the flexibility that this provides:

•	 Set of three members, such as {a, c, e}, {b, d, e}, {a, b, c}

•	 Set of four members, such as {a, b, c, d}, {b, c, d, e}, {a, c, d, e}

•	 Set of five members, such as {a, b, c, d, e}

Chapter 4 131

We could add exiting the session and summarizing to these sequences, as well as reloading a

saved file and continuing the session. There can also be a repetition of sets, sets with different

users, and sets with more functions. In the following chapters, we will add new features, includ-

ing image generation, audio, web search, and ML, that will expand the scope of the GenAISys

framework we have built.

In this section, however, we will run a session with two users in a simple sequence of events.

Then, we will run a scenario with multiple users and some basic sequences. Let’s begin with a

straightforward sequence of events.

A session with two users
In this example session, two users collaborate to brainstorm ideas for attractive travel destina-

tions they could recommend to customers on their online travel website. We start by running an

interface session, then display the conversation history, and finally summarize the discussion. To

begin the session, open Event-driven_GenAISys_framework.ipynb and run these sections of cells:

•	 Setting up the environment: Run all cells

•	 Conversational agent: Run the single cell

•	 Running the interface in the GenAISys IPython interface: This will initialize the con-

versation

With the conversation initialized, let’s now run the interactive session.

 Due to the stochastic nature of generative AI models, the outputs might vary slightly

with each execution. Likewise, minor differences may appear between this notebook

and the printed chapter, as multiple runs are performed during quality control.

Building the AI Controller Orchestration Interface132

The interactive conversation
The conversation starts with User01 by default, displaying the input box and the activated agent

checkbox. The sequence of events and functions triggered in this scenario is illustrated in Figure 4.5.

Figure 4.5: The GenAI agent performs a task with the user’s history

The flow follows this sequence:

User selection => Input => Agent checked => User history => GenAI agent => Output

To the user, this process is seamless, as illustrated in Figure 4.6. However, the underlying functions

required careful design and development to produce this smooth effect.

Figure 4.6: UI with the GenAI agent checked

From the user’s perspective, the process is straightforward. User01 types a prompt into the input

box: What is the capital of France?.

Figure 4.7: User entering a simple prompt

Chapter 4 133

The output will be displayed above the input widget, as shown here:

Figure 4.8: Output is displayed above the input box

At this point, even an untrained user can intuitively run the GenAISys with the basic information

provided in a one-page document. User01 continues with a follow-up question:

User01: What is there to visit?

Since the user history option is set to True in the conversational agent, the agent knows that the

question is about Paris and provides information on some iconic locations to visit:

Agent: The capital of France is Paris. There are numerous attractions
to visit in Paris, including: 1. **Eiffel Tower** - An iconic symbol of
Paris, offering stunning views of the city. 2. **Louvre Museum** - The
world's largest art museum, home to the Mona Lisa…

User02 now enters the dialogue by selecting User02 in the drop-down menu, as shown in Figure

4.9. User02 then asks what the capital of Spain is, the agent responds, and the output is displayed

above the input box.

Figure 4.9: Input: Another user can enter the conversation

Building the AI Controller Orchestration Interface134

At this point, the GenAISys core framework is set, and we will progressively enhance it in sub-

sequent chapters by addressing features such as security, user access controls, and data privacy.

User02 goes further and asks about the places worth visiting. The agent responds correctly because

the user history option is activated:

User02: What is there to visit?

Agent: The capital of Spain is Madrid. There are many attractions to visit
in Madrid, including: 1. **The Royal Palace of Madrid** - The official
residence of the Spanish royal family, although it is now used only for
state ceremonies. 2. **Prado Museum** …

Now, a key feature comes into play. User02 deactivates the AI agent, as shown in Figure 4.10,

and directly addresses User01, similar to an interaction on social media or remote collaboration

platforms.

Figure 4.10: Direct communication in a team without an AI agent

User01 responds informally: “Yes, that’s a good idea, but let’s think it over.” Subsequently, User01

ends the session by typing exit. This capability, as illustrated in Figure 4.11, takes our GenAISys

to a new level for the use cases we will explore in this book, such as the following configurations:

•	 A user can communicate with GenAISys alone in a one-to-one conversation

•	 A team can work together, enhancing their performance with the AI agent as a collaborator

•	 The users can be AI agents playing the role of managers from different locations when

the human managers are not available

Chapter 4 135

•	 The users can be systems providing information in real-time to human users

Figure 4.11: A team communicates directly and then ends the session

Upon exiting, the session ends, and the conversation history is saved to the conversation_history.

json file:

Figure 4.12: Saving and concluding the conversation

Like all other features in this framework, the exit behavior can be customized for individual

projects. Take the following examples:

•	 The conversation history can be saved or not

•	 Only parts of the conversation history can be saved

•	 The name of the saved conversation history file can contain a timestamp

•	 Going "…to the next cell" is optional

These are decisions to make for each use case. They will not modify the overall framework of the

GenAISys but allow for a high level of customization.

In this case, the team wants to display the conversation they just had.

Building the AI Controller Orchestration Interface136

Loading and displaying the conversation
The code for this function is a standard IPython display function to convert the JSON file,

conversation_history.json, into Markdown format. Let’s first check whether the conversation

history parameter and/or the summary parameter is activated:

display_conversation_history=True

summary=True

In this case, the conversation history and the summary function are both activated. Now, we will

check whether a conversation history file is present or not:

import json

from IPython.display import display, Markdown

import os

if display_conversation_history == True or summary==True:

 # File path

 file_path = 'conversation_history.json'

 # Check if the file exists

 if os.path.exists(file_path):

 display_conversation_history=True

 summary=True

 print(f"The file '{file_path}' exists.")

 else:

 display_conversation_history=False

 summary=False

 print(f"The file '{file_path}' does not exist.")

 print("The conversation history will not be processed.")

If a file exists, display_conversation_history will be set to True and summary=True (even if it

was set to False previously). A message will signal that the file exists:

The file 'conversation_history.json' exists.

Chapter 4 137

If display_conversation_history==True, then the conversation will be displayed:

Display option

if display_conversation_history==True:

 # File path

 file_path = 'conversation_history.json'

 # Open the file and read its content into the 'dialog' variable

 with open(file_path, 'r', encoding='utf-8') as file:

 dialog = json.load(file) # Parse JSON content

…

Function to format JSON content as markdown

def format_json_as_markdown(data, level=0):

 html_output = ""

 indent = " " * level

…

return html_output

Format the JSON into markdown

formatted_markdown = format_json_as_markdown(dialog)

Display formatted JSON as Markdown

display(Markdown(formatted_markdown))

The output is nicely formatted:

…

User01:

role:

user

content:

What is the capital of France?

role:

assistant

content:

The capital of France is Paris.

…

Content:

The capital of Spain is Madrid.

role:

user

Building the AI Controller Orchestration Interface138

content:

What is there to visit?

role:

assistant

content:

The capital of Spain is Madrid. There are many attractions to visit in
Madrid, including:

The Royal Palace of Madrid – …

The team has displayed the conversation but wants to take the process further and summarize

this online meeting that included an AI agent as a participant.

Loading and summarizing the conversation
The conversation we are summarizing shows how to merge an AI agent into an existing human

team to boost productivity. In some cases, the GenAISys will have worked on automated tasks

alone. In other cases, the GenAISys will be the copilot of one or several users. In others, in the

many critical moments of the life of an organization, teams of humans and AI agents will be able

to work together to make decisions.

In this section, we will ask the AI agent to summarize the conversation. We will integrate this

feature as a function in the GenAISys in the following chapters. For the moment, we will run it

separately after displaying the conversation, as shown in Figure 4.13.

Figure 4.13: Displaying and summarizing a conversation

Chapter 4 139

The code first loads the conversation_history.json file as in the display function. Then, we

define a function that converts the conversation history content into an optimal format for the

OpenAI API:

Function to construct dialog string from the JSON conversation history

def construct_dialog_for_summary(conversation_history_json):

 dialog = ""

 for user, messages in conversation_history_json.items():

 dialog += f"\n{user}:\n"

 for message in messages:

 role = message["role"]

 content = message["content"]

 dialog += f"- {role}: {content}\n"

 return dialog

The function to construct the full conversation history is called:

Construct the full dialog from the JSON history

formatted_dialog = construct_dialog_for_summary(conversation_history_json)

Now, we prepare the complete message for the custom GenAISys API call built for the system

and imported in the OpenAI subsection of the Setting the environment section in our notebook:

Task to summarize the conversation

mrole = "system"

mcontent = "Your task is to read this JSON formatted text and summarize
it."

user_role = "user"

task = f"Read this JSON formatted text and make a very detailed summary of
it with a list of actions:\n{formatted_dialog}"

Finally, we call the GenAISys OpenAI function:

The make_openai_api_call function is called

task_response = openai_api.make_openai_api_call(

 task, mrole, mcontent, user_role

)

Building the AI Controller Orchestration Interface140

The API response code will be displayed in Markdown format:

from IPython.display import Markdown, display

Display the task response as Markdown

display(Markdown(task_response))

Now, everything is ready. We can call the summarizing function if summary==True:

if summary==True:

 # File path to the JSON file

 file_path = '/content/conversation_history.json'

 # Check if the file exists before calling the function

 if os.path.exists(file_path):

 summarize_conversation(file_path)

 else:

 print(f"File '{file_path}' does not exist. Please provide a valid
file path.")

The output is a summary of the conversation history that contains an introduction and then a

detailed summary. The prompt for this summary can be modified to request shorter or longer

lengths. We can also design a prompt asking the generative AI model to target part of the conversa-

tion or design any other specific prompt for a given project. In this case, the output is satisfactory:

The JSON formatted text contains interactions between users and an
assistant, where users inquire about the capitals of France and Spain and
seek recommendations for attractions to visit in these cities. Below is a
detailed summary with a list of actions:

User01 Interaction:

1. Question about the Capital of France:

 User01 asks for the capital of France.

 The assistant responds that the capital of France is Paris.

2. Inquiry about Attractions in Paris:

Note that in Google Colab, /content/ is the default directory. So, the following file

paths point to the same directory:

 file_path = ‘/content/conversation_history.json’ or

 file_path = ‘conversation_history.json’

In another environment, you may need absolute paths.

Chapter 4 141

 User01 asks what there is to visit in Paris.

 The assistant provides a list of notable attractions in Paris:

 1. Eiffel Tower - Iconic symbol and must-visit landmark.

 2. Louvre Museum - Largest art museum, home to the Mona Lisa….

By running through the many possible sequences of tasks and events, we have seen the flexibility

that the GenAISys offers us. Let’s run a more complex multi-user session.

Multi-user session
In this section, we will run a technical session that activates the main functions we have built in

the previous chapters and this chapter:

•	 Semantic and sentiment analysis

•	 RAG for episodic memory retrieval

•	 A dialogue without an AI conversational agent

•	 Loading, displaying, and summarizing the conversation history

If you haven’t interrupted the previous session, then simply run the Running the interface section

in the GenAISys IPython interface cell again in our notebook, which will start a new conversation.

If you are starting from scratch, then to start the session, open Event-driven_GenAISys_framework.

ipynb and run the following sections of cells:

•	 Setting up the environment: All the cells

•	 Conversational agent: Contains one cell

•	 Running the interface in the GenAISys IPython interface: Will start the conversation

We are ready to explore some advanced features of the GenAISys. We will highlight the events

and functions that are activated by each prompt. The first sequence in the session is semantic

and sentiment analysis.

Semantic and sentiment analysis
To perform semantic and sentiment analysis, we will need to run the following sequence orches-

trated by the GenAISys as shown in Figure 4.14:

•	 1. User selection is not activated because User01 is the default user at the beginning of a

session. We could call this user the “host” if we wish, depending on the use case.

•	 User01 enters an input at 2. Input triggering 3. Agent checked, which is checked as the

default value when the session starts.

Building the AI Controller Orchestration Interface142

•	 The AI conversational AI controller takes over, parses the prompt, finds the Pinecone

keyword in the prompt, triggers a Pinecone query in the instruction scenario namespace,

augments the prompt, and triggers 4. GenAI agent.

•	 4. GenAI agent triggers an API call to GPT-4o and returns the response.

•	 5. Output triggers the updating of the display. The system is ready for a new input.

Figure 4.14: The sequence of events and functions to perform semantic and semantic analysis

The prompt that triggers this sequence of functions and events is as follows:

A customer said that our travel agency was pretty good but should have
more activities. Let's ask Pinecone for ideas.

The generative AI controller correctly identified Pinecone as a trigger to query the instruction

scenario namespace, which GPT-4o used to produce a satisfactory response:

Agent: genaisys:To enhance your travel agency's offerings based on the
customer's feedback, … 3. **Gather Data**: Collect data from various
sources such as travel blogs, customer reviews, social media, and travel
forums. This data can be used to train or query your semantic search
model. 4. **Generate Ideas**: Use the results from the semantic search to
generate a list of potential activities. For example, if you're looking
to expand adventure activities, the search might suggest zip-lining, rock
climbing, or guided hiking tours….

Note that the AI agent begins the response with genaisys, signaling that the proper namespace

was queried. This is an optional quality control feature that is good practice to implement when

developing the GenAISys.

Chapter 4 143

The prompt 2 sentiment analysis sequence represented in Figure 4.15 is identical to the semantic

analysis sequence with two differences:

•	 The 1. User selection event is activated because User02 is selected

•	 The prompt will contain an allusion to sentiment analysis

Figure 4.15: Task orchestration for sentiment analysis

The prompt contains the Pinecone keyword to activate a Pinecone query and the word sentiment,

which is an indicator for similarity search:

`A customer said that our travel agency was worse than our competition and
should have better service. Let's ask Pinecone what its sentiment is.`

We could add an explicit drop-down list for all the tasks requested, and we will in some cases. But

in this case, we are relying on implicit keyword searches. The balance between explicit (choosing

the task in a drop-down list, for example) and implicit (using a keyword or relying on the content

of the prompt) should be decided in workshops with the users.

In this case, the Pinecone keyword genaisys namespace is selected, and the output is satisfactory:

Agent: genaisys:Sentiment analysis score: 0.2 Explanation: The text
expresses a negative sentiment towards the travel agency. The customer
explicitly states that the agency is "worse than our competition" and
suggests that it "should have better service." These statements indicate
dissatisfaction and a negative comparison to competitors, which justifies
a low sentiment score.

Building the AI Controller Orchestration Interface144

The session continues to trigger episodic memory retrieval.

RAG for episodic memory retrieval
The sequence for episodic memory retrieval will search the Pinecone index for a personal mem-

ory of the team members. The memory is related to a past meeting that was saved and upserted

to the Pinecone index in the data01 namespace. User03 will trigger the following sequence of

functions and events, as represented in Figure 4.16:

•	 1. User selection is triggered independently because the user has changed.

•	 2. Input triggers the verification of 3. Agent checked.

•	 3. Agent checked triggers the conversational AI agent controller, which in turn triggers

3.2. RAG data retrieval in the data01 namespace based on the RAG keyword in the prompt.

•	 Finally, the generative AI agent, GPT-4o, runs a request with the augmented input and

returns an output.

•	 4. Output will trigger a display update, and the system is ready for a new turn in the

conversation.

Figure 4.16: Episodic memory retrieval

The prompt clearly refers to a past event that is related to the personal experience of the team.

The trace of this event is an episodic memory stored in the Pinecone index:

The CTO was talking about leveraging different kind of memories the other
day. What did he mean by that? Let's search RAG.

Chapter 4 145

The agent’s response is satisfactory:

Agent: data01:RAG, or Retrieval-Augmented Generation, is a framework that
combines retrieval-based methods with generative models to enhance the
capabilities of AI systems. When your CTO mentioned leveraging different
kinds of memories, they were likely referring to the various ways in which
information can be stored, accessed, and utilized within such a system.
Here are some types of "memories" that might be relevant in this context:
1. **Short-term Memory**:

We can see that the agent correctly found the namespace and also uses the phrase your CTO

mentioned, recognizing that this is an event linked to the personal experience of the team, not

impersonal semantic data.

The session continues with ideation.

Generative AI agent for ideation
The session continues with ideation. We want to leverage the power of the generative AI model,

GPT-4o, in this case, to give us ideas. As such, the sequence will not use the Pinecone index to

retrieve instructions or data, as shown in Figure 4.17:

•	 The user remains unchanged, 2. Input goes directly to 3. Agent checked.

•	 The system then ignores the Pinecone index but takes 3.2. User history into account.

•	 Finally, 4. GenAI agent triggers the generative AI call and returns the output.

•	 5. Output triggers the display update and the system is ready for another conversation turn.

Figure 4.17: GenAISys as an ideation generator

The prompt asks the AI agent for help to get some ideas:

But what do you, the AI Agent, suggest we do to leverage these types of
memories in our traveling promotion campaigns?

Building the AI Controller Orchestration Interface146

The AI agent inherits episodic memory since it refers to the CTO’s reflections in the conversation

history and now gives its suggestions based on the history of the conversation:

When the CTO mentioned leveraging different kinds of memories, they were
likely referring to the concept of using various types of memory systems
in artificial intelligence and computing to enhance performance and
capabilities.…

…consider the following strategies: 1. **Personalized Recommendations**:
Use short-term and long-term memory to analyze customer preferences
and past interactions to provide personalized travel recommendations
and offers. 2. **Dynamic Content**: Utilize episodic memory to tailor
marketing content based on past customer interactions and experiences,
making the promotions more relevant and engaging. …

The GenAISys has provided ideas for the team. Now, the team wants to think these ideas over.

Dialogue without an AI conversational agent
The team has now had a short conversation that could have continued as long as they needed

to. User01 takes over and communicates directly with the team. The GenAISys is now used as a

collaborative remote meeting tool, as shown in Figure 4.18:

1.	 User selection is triggered because User01 is stepping in.

2.	 User01 unchecks the Agent widget.

3.	 A message is entered, but the prompt is for other users, not the AI agent

4.	 Then, User01 ends the conversation, which is saved.

Figure 4.18: A dialogue without an AI agent

Chapter 4 147

User01 enters a message for the others:

OK. Let's stop here, get a summary, and go see the manager to get some
green lights to move ahead.

Figure 4.19 shows that User01 has unchecked the AI agent to send the message and is now ready

to end the session by entering exit.

Figure 4.19: The user ends the conversation

The GenAISys displays the conversation ended message, as shown in Figure 4.20.

Figure 4.20: Conversation ends

The message instructs the users to proceed to the next cell to display and summarize the con-

versation.

Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Building the AI Controller Orchestration Interface148

Loading, displaying, and summarizing the conversation
The display and summarization of a conversation will be integrated into the functions of the Ge-

nAISys framework in Chapter 5, Adding Multimodal, Multifunctional Reasoning with Chain of Thought.

In this notebook, we will proceed to the next cells as described in the A session with two users section.

The output of the display function provides Markdown text of the conversation:

…assistant

content:

When the CTO mentioned leveraging different kinds of memories, they were
likely referring to the concept of…

Episodic Memory: This involves storing information about specific events
or experiences. In AI, episodic memory can be used to recall past
interactions or events to inform future decisions…

…To leverage these types of memories in your travel promotion campaigns,
consider the following strategies:

Personalized Recommendations: Use short-term and long-term memory to
analyze customer preferences and past interactions to provide personalized
travel recommendations and offers.

Dynamic Content: Utilize episodic memory to tailor marketing content based
on past customer interactions and experiences, making the promotions more
relevant and engaging….

The summary is interesting because it provides useful suggestions for this
online travel agency:

AI Suggestion for Travel Promotion:

1.Personalized Recommendations: Use short-term and long-term memory for
personalized travel offers.

2.Dynamic Content: Utilize episodic memory for tailored marketing content.

3.Knowledge-Based Insights: Leverage semantic memory for travel tips and
destination information.

4.Real-Time Engagement: Use working memory for real-time customer
interactions.

5.Feedback and Improvement: Implement long-term memory systems to analyze
feedback and improve campaigns.

We built the fundamental structure of the GenAISys framework we will be enhancing throughout

the next chapters. We also ran some basic conversations. Let’s summarize this chapter and move

up to the next level.

Chapter 4 149

Summary
A complex, event-driven, fast-moving economy requires powerful automation for the hundreds

of tasks generated by just-in-time consumer needs. A GenAISys can satisfy those requirements

with a responsive interface and generative AI capabilities. The challenge is providing a dynamic,

intuitive system. No matter how generative AI automates tasks—and they can be tremendously

automated—the final decisions will be made by humans. Humans need to communicate in meet-

ings, whether they are organized physically or online. The challenge then evolves to provide an

organization with multi-user GenAISys.

In this chapter, we first explored a high-level framework to build multi-user, multi-turn, multi-

functional, and RAG features. The framework includes real-time memory features and long-term

knowledge stored in a vector store. The overall ChatGPT-like system requires a response interface

and conversational agent that we will enhance in the following chapters.

We then build an event-driven GenAISys response interface with IPython. The interface was

seamless for an end user who can use the system with three widgets. The first widget managed

the users’ input, the second one the active user, and the third an agent checkbox to activate or

deactivate the AI conversational agent built with GPT-4o.

Finally, we ran a multi-user, multi-turn GenAISys session centered on traveling for an online

travel agency team. The first goal was to run a seamless GenAISys for the users with three wid-

gets. The second goal was to explore the scope of short-term, long-term, semantic, and episodic

memory. The third goal was to run RAG to retrieve instructions and data. Finally, the goal was

to let the users communicate with or without the AI agent. We concluded the session by saving

and summarizing it.

We now have a framework that we can configure and enhance in the following chapters, starting

by adding multimodal functions and external extensions to the GenAISys in Chapter 5, Adding

Multimodal, Multifunctional Reasoning with Chain of Thought.

Questions
1.	 The interface of a GenAISys must be seamless for the users. (True or False)

2.	 IPython is the only tool available to build a GenAISys interface. (True or False)

3.	 The AI conversational AI agent built with GPT-4o must be enhanced with RAG. (True or

False).

Building the AI Controller Orchestration Interface150

4.	 GPT-4o can provide sufficient information and perform tasks quite well. (True or False)

5.	 Pinecone can be used to retrieve instruction scenarios. (True or False)

6.	 A namespace is only for data in Pinecone. (True or False)

7.	 A vector store such as Pinecone is a good way to store episodic memory. (True or False)

8.	 We don’t need an agent checkbox option. (True or False)

9.	 Querying Pinecone is done by the user in a GenAISys. (True or False)

10.	 GenAISys is a complex system that should be seamless for the user. (True or False)

References
•	 IPython documentation: https://ipython.org/

•	 OpenAI multi-turn conversations: https://platform.openai.com/docs/guides/audio/
multi-turn-conversations/

•	 Google Colab functionality: https://colab.research.google.com/

Further reading
•	 Liu, J., Tan, Y. K., Fu, B., & Lim, K. H. (n.d.). Balancing accuracy and efficiency in multi-turn

intent classification for LLM-powered dialog systems in production: https://arxiv.org/
abs/2411.12307

Subscribe for a Free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/TRO5B or scan the QR code below.

https://ipython.org/
https://ipython.org/

https://platform.openai.com/docs/guides/audio/multi-turn-conversations/
https://platform.openai.com/docs/guides/audio/multi-turn-conversations/
https://platform.openai.com/docs/guides/audio/multi-turn-conversations

https://colab.research.google.com/
https://colab.research.google.com/

https://arxiv.org/abs/2411.12307
https://arxiv.org/abs/2411.12307
https://packt.link/TRO5B

5
Adding Multimodal,
Multifunctional Reasoning with
Chain of Thought

At this point in our journey, we’ve built the core framework of our GenAISys. We have a respon-

sive, small-scale, ChatGPT-like interactive interface. We expanded beyond typical one-to-one

copilot interactions, creating a collaborative multi-user environment where an AI agent actively

participates in discussions. We further extended this human-centric design by integrating RAG,

giving our AI agent access to a Pinecone index capable of managing both instruction scenarios

and data. Finally, we built a flexible GenAISys that allows users to activate or deactivate the AI

agent during collaborative meetings. In short, we have created a human-centric AI system that

augments human teams rather than attempting to replace people with machine intelligence.

However, despite its human-centric nature, the exponential growth of global transcontinental

supply chains and the vast daily flow of goods, services, and digital content require significant

levels of automation. For example, we cannot realistically expect social media platforms such as

Meta, X, or LinkedIn to employ millions of people to moderate billions of messages—including

images, audio, and video files—every day. Similarly, companies such as Amazon cannot manage

millions of online transactions and physical deliveries exclusively through human efforts. Auto-

mation is essential to augment human decision-making and reasoning, particularly for critical

tasks at scale. Therefore, in this chapter, we will extend the GenAISys framework by adding mul-

timodal capabilities and reasoning functionalities. To address the challenges of cross-domain

automation, we will implement image generation and analysis and begin integrating machine

learning. Our objective is to build a new agentic AI layer into our GenAISys.

Adding Multimodal, Multifunctional Reasoning with Chain of Thought152

We will begin by outlining features that we are integrating into our existing GenAISys framework.

Given the broadening scope of our GenAISys, we will introduce chain-of-thought (CoT) rea-

soning processes to orchestrate and manage complex tasks effectively. We will then incorporate

computer vision capabilities. This includes building an image generation function with DALL-E

and an image analysis function using GPT-4o. Next, we will add audio functionality for those

who prefer voice interactions—using speech to text (STT) for input prompts and text to speech

(TTS) for responses. Lastly, we’ll introduce a decision tree classifier as a machine learning end-

point within the GenAISys, capable of predicting activities. By the end of this chapter, we will

have successfully extended the GenAISys into a fully interactive, multimodal reasoning platform

ready to tackle complex cross-domain use cases.

In all, this chapter covers the following topics:

•	 The architecture of the additional functions for our GenAISys

•	 Implementing a widget image file processing

•	 Implementing a widget to enable voice dialogues

•	 Image generation with DALL-E

•	 Image analysis with GPT-4o

•	 Building an endpoint for machine learning with a decision tree classifier

•	 Implementing CoT reasoning

Let’s begin by designing an enhanced interface for our GenAISys with additional AI capabilities.

Enhancing the event-driven GenAISys interface
So far, the GenAISys framework we’ve developed is event-driven, activated by user inputs (hu-

man- or system-generated) that trigger specific AI agent functions. In this chapter, we’ll expand

the GenAISys by adding several new capabilities:

•	 Voice interaction, allowing users to manage the GenAISys through speech

•	 A new machine learning endpoint using a decision tree classifier for predictive tasks

•	 Multimodal functionality, including image generation with DALL-E and image analysis

using GPT-4o

•	 A CoT reasoning orchestrator to coordinate sophisticated, self-reflective instruction sce-

narios

Chapter 5 153

Let’s start by examining the expanded GenAISys architecture shown in Figure 5.1:

Figure 5.1: Architecture of the enhanced GenAISys interface

This figure (which is an extended version of Figure 4.1 from the previous chapter) highlights the

new capabilities we’ll integrate into our GenAISys:

•	 I1 – AI controller: Enhanced with CoT reasoning, enabling automated sequences of tasks

as needed and incorporating a widget to manage voice-based user interactions

•	 I2 – Multi-user chatbot: Maintained exactly as designed in previous chapters

•	 F1 – Generative AI model: Extended to handle multimodal tasks

•	 F2 – Memory retention: Continues unchanged from earlier chapters

•	 F3 – Modular RAG: Continues unchanged from earlier chapters

•	 F4 – Multifunctional capabilities: New additions covering audio and image processing,

including a decision tree classifier for making predictions

 Reminder

The decision to present the main components of the GenAISys architecture without

arrows is a deliberate choice designed to convey a core concept: modularity and

architectural flexibility. The figure is not a rigid blueprint but rather a conceptual

toolkit. It shows you the powerful components at your disposal—I1. AI controller, I2.

Multi-user chatbot, F1. Generative AI model, F2. Memory retention, F3. Modular

RAG, and F4. Multifunctional capabilities—as independent, interoperable blocks.

Adding Multimodal, Multifunctional Reasoning with Chain of Thought154

We are expanding the functionality of GenAISys as built in Chapter 4 by adding new layers rather

than replacing existing components. Our emphasis here is on enhancement and seamless inte-

gration. The following figure provides a high-level flowchart demonstrating how the additional

capabilities will integrate into our existing GenAISys architecture:

Figure 5.2: Flowchart of additional functions to the GenAISys

Chapter 5 155

The following additional functions will be integrated into our existing GenAISys interface:

•	 Start: Initializes two new widgets—one for TTS functionality and another to handle

image files

•	 User Input: Now includes optional voice input, enabled if the user chooses

•	 Generate Bot and Generate Bot Response: These processes connect directly to the existing

VBox interface, displaying reasoning steps clearly whenever the AI agent utilizes CoT logic

To achieve this expanded functionality, we will develop the following key features:

•	 STT and TTS: Integrated using Google Text-to-Speech (gTTS)

•	 Machine learning endpoint: Implementing a decision tree classifier for predictive ca-

pabilities

•	 Image generation and analysis: Powered by OpenAI’s DALL-E and GPT-4o models

•	 CoT reasoning: Orchestrating tasks, functions, and extensions, thus providing GenAISys

with explicit machine (not human) reasoning abilities

Although we are adding several new functions, including reasoning functionality (CoT), we will

introduce only a single new package installation, gTTS, to minimize complexity in this chapter.

Our primary focus remains on building a reliable architecture with optimal dependency manage-

ment. To begin, let’s explore the updated elements of the IPython interface and the enhancements

to the AI agent.

IPython interface and AI agent enhancements
The GenAISys architecture we’ve developed can now be viewed as comprising three interconnected

layers, as shown in Figure 5.3. These enhancements blur the lines between orchestration, control,

and agent functionality, as these roles are now distributed across multiple layers:

•	 Layer 1 (IPython interface) manages user and system inputs through event-driven wid-

gets, orchestrating tasks based on user interactions (inputs and checkboxes).

•	 Layer 2 (AI agent) controls the generative AI models (in our case, OpenAI models) and

can trigger a CoT reasoning sequence.

Adding Multimodal, Multifunctional Reasoning with Chain of Thought156

•	 Layer 3 (functions and agents) contains functions triggered by the AI agent. Notably, the

CoT function itself acts as an agent, capable of orchestrating generative AI tasks, machine

learning, and additional functions as needed.

Figure 5.3: The three layers of the event-driven GenAISys

This high-level architecture integrates orchestrators, controllers, and agents, each broken down

into specific Python functionalities. Let’s start by exploring Layer 1, the IPython interface, from

a functional standpoint.

Layer 1: IPython interface
The IPython interface now incorporates three new features (highlighted in yellow in Figure 5.4):

a voice widget, a file-handling widget, and a dedicated reasoning interface triggered by user

inputs and AI agent activities. These enhancements bring the interface total to six interactive

widgets and functions.

Chapter 5 157

Figure 5.4: Voice, file, and reasoning features are added to the IPython interface

Let’s go through each widget and function:

1.	 User selection remains as designed in Chapter 4. It is central to the collaborative design

of the GenAISys and remains unchanged.

2.	 User input is also retained from Chapter 4 without modification; this widget remains

central for capturing user prompts.

3.	 The AI agent, as described in Chapter 4, activates or deactivates the generative AI agent

(chat_with_gpt).

4.	 The voice widget enables voice-based interactions through STT and TTS. We’re using

cost-free, built-in functionality for STT:

•	 Windows: Press the Windows key + H

•	 macOS: Enable Dictation under Keyboard settings and choose a custom shortcut

For TTS, the gTTS service is utilized and controlled via a checkbox set to False by default:

Create a checkbox to toggle text-to-speech

tts_checkbox = Checkbox(

 value=False,

 description='Voice Output',

 layout=Layout(width='20%')

)

Adding Multimodal, Multifunctional Reasoning with Chain of Thought158

If the AI agent’s checkbox is checked, then the TTS function is called:

if agent_checkbox.value:

…

if tts_checkbox.value:

 text_to_speech(response)

The resulting MP3 file (response.mp3) is automatically played in the update_display()

function:

def update_display():

…

#Audio display

 if os.path.exists("/content/response.mp3"):

 display(Audio("/content/response.mp3", autoplay=True))

 !rm /content/response.mp3

5.	 The files widget is a new widget that activates file management. It will display images

generated and saved by the generative AI model (DALL-E) triggered in the AI agent func-

tion, chat_with_gpt. It is controlled via another checkbox, initially set to False:

Create a checkbox to toggle agent response

files_checkbox = Checkbox(

 value=False,

 description='Files',

 layout=Layout(width='20%')

)

If an image exists, it is displayed with the Python Image Library (PIL) in the update_

display() function:

 if os.path.exists("/content/c_image.png") and files_checkbox.
value==True:

 # Open the image using PIL

 original_image = PILImage.open("/content/c_image.png")

 # Resize the image to 50% of its original size

 new_size = (original_image.width //2, original_image.height//2)

 resized_image = original_image.resize(new_size)

 # Display the resized image

 display(resized_image)

Chapter 5 159

6.	 Reasoning activated is another new widget of the GenAISys. The user input will trigger

an event in the AI agent, and that, in turn, will trigger a CoT reasoning process. The rea-

soning interface will display the thought process of the CoT in real time. The reasoning

output widget is created at the start of a session:

Create an output widget for reasoning steps

reasoning_output = Output(

 layout=Layout(border="1px solid black", padding="10px",

 margin="10px", width="100%")

)

The widget will receive outputs from the CoT process and display them independently

from VBox and persistently in the update_display() function:

def update_display():

…

Display reasoning_output persistently

 display(reasoning_output)…

The VBox interface now contains all interactive widgets, including the newly added TTS and files

widgets:

if conversation_active:

 display(

 VBox(

 [user_selector, input_box, agent_checkbox,

 tts_checkbox, files_checkbox],

 layout=Layout(display='flex', flex_flow='column',

 align_items='flex-start', width='100%')

)

)

Given the length and complexity of responses from the AI agent (especially during CoT processes),

we introduced an enhanced formatting feature using Markdown. The update_display() function

now formats entries clearly, calling a dedicated formatting function:

def update_display():

 clear_output(wait=True)

 for entry in user_histories[active_user]:

 formatted_entry = format_entry(entry)

 display(Markdown(formatted_entry))

Adding Multimodal, Multifunctional Reasoning with Chain of Thought160

The format_entry(entry) function formats the user’s (blue) and assistant’s (green) responses,

ensuring readability:

def format_entry(entry):

 """Format the content of an entry for Markdown display."""

 if entry['role'] == 'user':

 formatted_content = format_json_as_markdown(entry['content'])

 if isinstance(entry['content'], (dict, list))

 else entry['content']

 formatted_content = formatted_content.replace("\n", "
") #
Process newlines outside the f-string

 return f"**{active_user}:**
{formatted_content}"

…

 elif entry['role'] == 'assistant':

 formatted_content = format_json_as_markdown(entry['content'])

 …

 return f"**Agent:** {formatted_
content}"

This design emphasizes that the IPython interface (Layer 1) is purely to orchestrate user inter-

actions and trigger underlying layers of functions and agents. This architecture ensures that you

have the flexibility you need if you want to call the functions and agents directly without a user

interface.

With the IPython interface described, let’s explore the enhanced capabilities in Layer 2, the AI

agent.

Layer 2: AI agent
The AI agent invoked by the IPython interface in Layer 1 remains the chat_with_gpt function,

reinforcing the conversational nature of GenAISys. With the introduction of reasoning capabilities,

the conversation can now occur directly between AI agents as well.

The chat_with_gpt function has been expanded with several new features. If necessary, review

the core functionalities described in Chapter 4.

Chapter 5 161

Let’s explore the new enhancements added to the AI agent:

•	 continue_functions=True has been introduced at the beginning of the function to ensure

that only one requested task is executed at a time.

•	 continue_functions is set to False at the end of the Pinecone query process, triggered

by the presence of the Pinecone keyword in the user message. This stops any additional

unintended task executions.

•	 The new function, reason.chain_of_thought_reasoning, described later, in the Reasoning

with CoT section, is called under specific conditions:

if "Use reasoning" in user_message and "customer" in user_message
and "activities" in user_message and continue_functions==True:

The continue_functions==True condition ensures the reasoning function is called with

the initial user query. A sample customer activities file is also downloaded as part of this

process:

initial_query = user_message

download("Chapter05","customer_activities.csv")

reasoning_steps = reason.chain_of_thought_reasoning(initial_query)

In the example use case for this chapter, a team can automatically access and query a

regularly updated customer activity data source. The sample file provided contains 10,000

records of historical customer activities, including customer IDs, locations, activity types,

and activity ratings:

Figure 5.5: The customer ratings of historical sites

Adding Multimodal, Multifunctional Reasoning with Chain of Thought162

A decision tree classifier later utilizes this dataset within the CoT reasoning function to

predict the most popular customer activity. Once the response is generated, it is added

to the output, and continue is set to False:

aug_output=reasoning_steps

continue_functions=False

•	 The new function, reason.generate_image, that we will implement in the Image gener-

ation and analysis section has also been integrated. It is called as follows:

prompt = user_message

image_url = reason.generate_image(prompt, model="dall-e-3",

 size="1024x1024", quality="standard", n=1)

The generated image URL is returned, and the image itself is downloaded and saved locally

for display or further processing:

Save the image locally

save_path = "c_image.png"

image_data = requests.get(image_url).content

with open(save_path, "wb") as file:

 file.write(image_data)

A corresponding message is added to the output, and the continue flag is set to False:

aug_output="Image created"

continue_functions=False

•	 The function previously known as openai_api.make_openai_api_call is now renamed

reason.make_openai_api_call. It maintains the same functionality as in Chapter 4 but is

now part of the GenAISys reasoning library. The memory management if user_memory…

else condition, which takes the complete user history or just the present user message

into account, has been updated with explicit conditions that check both the state of user_

memory and the continue_functions flag:

if user_memory==False and continue_functions==True:

…

if user_memory==True and continue_functions==True: …

Chapter 5 163

The AI agent thus acts as an intermediate orchestrator, calling and managing the execution of

lower-layer functions rather than executing them directly. The Pinecone interface remains the top

layer that invokes the AI agent, which in turn interacts with the specific functions within Layer 3.

Layer 3: Functions
In this layer, our focus is on the new functionalities introduced to enable advanced reasoning

through the CoT cognitive agent. Pinecone indexing and standard OpenAI calls remain as imple-

mented in Chapter 4. The primary additions in this chapter are as follows:

•	 Image generation and analysis using DALL-E and GPT-4o, respectively

•	 CoT reasoning, which introduces a cognitive agent capable of orchestrating tasks

•	 Voice interaction capabilities enabled through gTTS

•	 A machine learning endpoint leveraging a decision tree classifier

We will explore these functionalities in the upcoming sections of this chapter, as follows:

•	 The environment setup and initialization for gTTS and machine learning are detailed in

the Setting up the environment section

•	 Image functionalities are covered in the Image generation and analysis section

•	 The reasoning orchestration is built in the Reasoning with CoT section

By the end of this chapter, our enhanced three-layer GenAISys will have new, robust capabilities

designed to expand even further in subsequent chapters. Let’s now dive deeper into these en-

hancements, beginning with the environment setup.

Setting up the environment
In this section, we will enhance, expand, and rearrange the environment previously built to finalize

the GenAISys framework. These changes are essential for the upcoming use cases in subsequent

chapters. Open the Multimodal_reasoning_with_Chain_of_Thought.ipynb notebook within the

Chapter05 directory on GitHub (https://github.com/Denis2054/Building-Business-Ready-

Generative-AI-Systems/tree/main).

Regarding package installations, the Setting up the environment section in the notebook remains

largely unchanged from the previous chapter (Event-driven_GenAISys_framework.ipynb), with

just one new addition: Google Text-to-Speech (gTTS).

However, several significant updates have been made to support the CoT generative AI reasoning

features. Let’s examine each of these updates, starting with the OpenAI section.

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main

Adding Multimodal, Multifunctional Reasoning with Chain of Thought164

OpenAI
The first two files we download remain the same as in previous chapters. The third and fourth

files, however, are new and have been added to support advanced functionality:

from grequests import download

download("commons","requirements01.py")

download("commons","openai_setup.py")

download("commons","reason.py")

download("commons","machine_learning.py")

reason.py now contains the generative AI library with the functions built in the previous chap-

ters and the ones we are adding in this chapter. These functions in the generative AI library and

their status are as follows:

•	 make_openai_api_call(input, mrole,mcontent,user_role) is a general-purpose

OpenAI API call described in the Setting up the environment section of Chapter 1. It is now

imported as follows:

from reason import make_openai_api_call

•	 image_analysis is the image analysis function that can describe an image or use the

image as a starting point to generate content such as a story. This function is described

in the Image generation and analysis section of this chapter.

•	 generate_image is a new function that generates images with DALL-E, detailed in the

Image generation and analysis section of this chapter.

•	 chain_of_thought_reasoning is a new CoT logic function of the GenAISys we are building.

We will implement it in the Reasoning with CoT section of this chapter. It can call functions

from other libraries, such as machine_learning.

machine_learning.py will now contain a decision tree classifier in a function named ml_agent.

The function takes two arguments:

ml_agent(ml_agent(feature1_value, feature2_column)

In our example use case, feature1_value will represent a customer location, and feature2_

column will represent customer activities. The ml_agent classifier will predict the most popular

customer activity for a specific location based on historical data.

Chapter 5 165

We import ml_agent from machine_learning.py as follows:

Import the function from a custom machine learning file

import os

import machine_learning

from machine_learning import ml_agent

The remaining OpenAI setup subsections, including package installation and API key initialization,

remain identical to previous chapters. Let’s now initialize our new functionalities.

Initializing gTTS, machine learning, and CoT
We will initialize the following new functions:

•	 gTTS is installed with !pip install gTTS==2.5.4, which is an open source, free TTS

library that fits prototyping purposes: https://pypi.org/project/gTTS/. `click`, a

command-line library, is required for gTTS. The first cell checks if we wish to use gTTS

by setting use_gtts to True:

use_gtts = True #activates Google TTS in Google Colab if True and
deactivates if False

The second cell of the notebook will check for and set up the correct `click` version if

use_gtts is set to True. If an update is needed, it will then display a clear message in the

notebook output prompting you to manually restart the runtime. After restarting, sim-

ply click `Run All` to continue. The code will display an HTML message to restart if the

version is updated:

import importlib.metadata

from IPython.display import display, HTML # Required for the message

... (define required_click_version, current_click_version, and
html_message as in your code) ...

if current_click_version != required_click_version:

 # --- Commands to uninstall and install ‘click’ would go here

 # Example: !pip uninstall -y click

 # Example: !pip install click==8.1.8

 # Display the styled message prompting for manual restart

 display(HTML(html_message))

https://pypi.org/project/gTTS/

Adding Multimodal, Multifunctional Reasoning with Chain of Thought166

 # Stop the Python cell execution gracefully, prompting restart

 raise SystemExit(“Please restart the Colab runtime to apply
changes.”)

else:

 print(f”--- ‘click’ is already at the correct version
({required_click_version}). No action needed. ---”)

If use_gtts is set to True, we install gTTS and define a TTS conversion function:

use_gtts activates Google TTS in Google Colab if True and
deactivates if False

if use_gtts:

 !pip install gTTS==2.5.4

 from gtts import gTTS

 from IPython.display import Audio

def text_to_speech(text):

 # Convert text to speech and save as an MP3 file

 if use_gtts:

 if not isinstance(text, str):

 text = str(text) # Making sure the text is a string not a
list

 tts = gTTS(text)

 tts.save(“response.mp3”)

This function will be activated in the IPython interface when the AI agent returns a re-

sponse, as explained earlier in the Layer 1: IPython interface section.

•	 The ml_agent algorithm endpoint is imported from machine_learning.py:

Import the function from the custom OpenAI API file

import os

import machine_learning

from machine_learning import ml_agent

This decision tree classifier function will predict popular customer activities based on

historical data, enhancing our GenAISys’s predictive capabilities.

Chapter 5 167

•	 The CoT reasoning framework is imported from reason.py:

Import the function from the custom OpenAI API file

import os

import reason

from reason import chain_of_thought_reasoning

The Pinecone installation, initialization, and queries are then defined as explained in Chapters 3

and 4. Take some time to revisit those chapters if needed, as we will reuse the functions previously

developed. We’re now prepared to build the image generation and analysis functions.

Image generation and analysis
In this section, we will begin by creating a flexible image generation function using OpenAI’s

DALL-E model. Following that, we’ll build a function for image analysis. The objective is to en-

hance GenAISys with computer vision capabilities while preserving its responsive, event-driven

functionality, as illustrated in Figure 5.6:

Figure 5.6: Generating images with flexible event-driven triggers

The preceding figure is an evolution of the architecture we first developed in Chapter 4. It has

been augmented to include new capabilities: activation of speech (voice) features, management

of image files, enhanced display functionality, and reasoning through CoT. In this section, our

focus will specifically be on integrating and demonstrating computer vision capabilities alongside

the enhanced display functionality.

Adding Multimodal, Multifunctional Reasoning with Chain of Thought168

The image generation and analysis processes are designed to be flexible:

•	 No mandatory selection or explicit widget activation is required for image generation

or analysis. We could easily add explicit widgets labeled Image Generation or Image

Analysis if a use case demands it. However, the approach we’re adopting here is intention-

ally flexible, paving the way for integration within more complex, automated reasoning

workflows such as CoT.

•	 The Files checkbox widget serves two distinct purposes:

•	 If unchecked, an image is generated by DALL-E, saved to a file, but not displayed.

This allows images to be generated quietly in the background for later use or stor-

age.

•	 If checked, the generated or analyzed image will be displayed in the user interface,

as illustrated in Figure 5.7.

•	 The AI conversational agent automatically activates image generation or analysis based

on user prompts. These vision capabilities can also trigger automated reasoning processes,

enabling the system to execute comprehensive CoT tasks seamlessly.

Note that the display will only display image files if the Files widget is checked. Let’s now dive

deeper into how these vision features are integrated within the GenAISys interface. Specifically,

we’ll demonstrate the scenario where the Files checkbox is activated (checked), as depicted in

Figure 5.7:

Figure 5.7: The files checkbox is checked so that the image will be displayed

Chapter 5 169

With the Files checkbox selected, the image generated by DALL-E in response to the user’s prompt

will be immediately displayed, as shown in Figure 5.8:

Figure 5.8: Entering a prompt and displaying the image generated

If the Files option is not checked, the image will be generated and saved but not displayed. Sim-

ilarly, image display functionality also applies to analyzing images downloaded from external

sources. When the Files checkbox is unchecked, the analysis runs without visually displaying the

image. We are now ready to examine the implementation details of the image generation function.

Image generation
The function to generate an image is located in the custom generative AI library, reason.py, in

the commons directory. A user prompt or a CoT framework can trigger this function. The name of

the function is generate_image, and it takes five arguments:

def generate_image(

 prompt, model="dall-e-3", size="1024x1024", quality="standard", n=1

):

Adding Multimodal, Multifunctional Reasoning with Chain of Thought170

The five arguments are as follows:

•	 prompt: The query related to the image that is provided by the user or the system.

•	 model: The OpenAI model to use. In this case, the default value is gpt-4o.

•	 size: The size of the image. The default size of the image is 1024x1024.

•	 quality: Defines the quality of the image. The default value is standard, which costs less

than the higher-quality hd option.

•	 n: Defines the number of images to generate. The default value is 1.

The function returns the URL of the generated image. The code first initializes the OpenAI client:

def generate_image(

 prompt, model="dall-e-3", size="1024x1024", quality="standard", n=1

):

 # Initialize the OpenAI client

 client = OpenAI()

The DALL-E model is then called via the OpenAI API with the specified parameters:

 # Generate the image using the OpenAI API

 response = client.images.generate(

 model=model,

 prompt=prompt,

 size=size,

 quality=quality,

 n=n,

)

Once the content, messages, and parameters are defined, the OpenAI API is called:

 # Make the API call

 response = client.chat.completions.create(

 model=model,

 messages=messages,

 **params # Unpack the parameters dictionary

)

 The parameters are described in detail in Chapter 1 in the Setting up the environment

section.

Chapter 5 171

The URL of the image is extracted from response and returned:

Extract and return the image URL from the response

 return response. data[0].url

Once an image has been generated or retrieved, we can choose to display or analyze it, depending

on our needs.

Image analysis
The function to analyze an image is also located in the custom generative AI library, reason.py,

in the commons directory. This function, named image_analysis, is defined as follows, and takes

three arguments:

def image_analysis(image_path_or_url, query_text, model="gpt-4o"):

The three arguments are as follows:

•	 image_path_or_url (str): The path to access a local image file or the URL of the image.

•	 query_text (str): The query related to the image that is provided by the user or the

system

•	 model (str): The OpenAI model to use. In this case, the default value is gpt-4o, which

possesses vision capabilities(generation and analysis).

The function initializes the content structure for the API call with the provided query text:

Initialize the content list with the query text

 content = [{"type": "text", "text": query_text}]

The function then searches for the image in a URL or a local file:

 if image_path_or_url.startswith(("http://", "https://")):

 # It's a URL; add it to the content

 content.append({"type": "image_url",

 "image_url": {"url": image_path_or_url}})

 else:

 # It's a local file; read and encode the image data

 with open(image_path_or_url, "rb") as image_file:

 image_data = base64.b64encode(

 image_file.read()).decode('utf-8')

Adding Multimodal, Multifunctional Reasoning with Chain of Thought172

If the image is in a URL, it is appended to the content. If the image is a local file, it is encoded in

Base64 and formatted as a UTF-8 string. This format enables embedding the image data within

text-based systems (such as JSON or HTML). A data URL is then created and appended to the

content:

Create a data URL for the image

 data_url = f"data:image/png;base64,{image_data}"

 content.append({"type": "image_url", "image_url": {"url": data_url}})

The OpenAI message is created with the context that contains the query information and the

image:

Create the message object

 messages = [{"role": "user", "content": content}]

The API call includes a set of standard parameters, detailed in Chapter 1 (in the Setting up the

environment section):

Define the parameters

 params = {

 "max_tokens": 300,

 "temperature": 0,

 "top_p": 1,

 "frequency_penalty": 0,

 "presence_penalty": 0,

Once the content, messages, and parameters are defined, the OpenAI API is called:

 # Make the API call

 response = client.chat.completions.create(

 model=model,

 messages=messages,

 **params # Unpack the parameters dictionary

)

Chapter 5 173

For further integration, particularly with RAG using Pinecone in Chapter 6, the response is saved

as text in a file. This enables subsequent use and retrieval:

Save the result to a file

 with open("image_text.txt", "w") as file:

 file.write(response.choices[0].message.content)

return response.choices[0].message.content

This image_analysis function will also be called by the CoT reasoning process built later in this

chapter, where query_text will be dynamically created and passed into the function:

 response = image_analysis(image_url, query_text)

We now have fully functional computer vision components integrated into our GenAISys. With

these capabilities, we are ready to build the CoT reasoning process.

Reasoning with CoT
The exponential acceleration of global markets has led to billions of micro-tasks being generated

daily across platforms such as social media, e-marketing sites, production lines, and SaaS plat-

forms. Without robust automation, keeping pace with these real-time demands is impossible.

Speed and efficiency have become paramount, requiring tasks to be executed in real time or

near-real time. Recent advances in AI have significantly helped us adapt to these market para-

digms, where we must handle an increasing volume of tasks in increasingly shorter timeframes.

However, as we increase the number and scope of AI functions to solve problems, it is becoming

confusing for users to run complex scenarios with copilots. It is also quite challenging for a team

of developers to create a GenAISys that contains the functions they need and includes a clear and

intuitive sequence of operations for problem-solving.

In this section, we address these challenges by implementing CoT reasoning. CoT reasoning

breaks complex tasks into smaller, more manageable steps where the output of one step becomes

the input for the next. This process mimics (without replacing) human-like reasoning. It reduces

cognitive overload for users, allowing them to focus primarily on decision-making. Additionally,

CoT reasoning makes the AI agent’s internal thought process transparent, providing real-time

explainability of each reasoning step.

Adding Multimodal, Multifunctional Reasoning with Chain of Thought174

The goal of this section is to build a CoT reasoning process using Python, leveraging the flexible

and interactive GenAISys framework we’ve developed. Specifically, we will apply CoT to simu-

late customer-preference analysis for an online travel platform, generate creative suggestions

for activities, produce images using DALL-E, and create storytelling narratives based on these

images with GPT-4o.

At first glance, a CoT cognitive agent might seem similar to traditional sequences of functions

found in classical software development. Hence, let’s first clarify the important distinctions be-

tween them before we dive into the code.

CoT in GenAISys versus traditional software sequences
Seasoned software developers are used to implementing complex sequences of functions. To

bridge the conceptual gap between traditional software sequences and cognitive CoT reasoning

(which mimics rather than replaces human cognition), let’s first distinguish their purposes clearly:

•	 A traditional sequence of non-AI or AI functions consists of a series of steps executed

independently, following a black-box model in which the output of one function serves

as the static input of the next.

•	 In a CoT reasoning process, the steps mimic human-like reasoning. Each step goes be-

yond a simple function and follows a logical progression. Each new process builds on the

output of the previous step, as we will see when we implement CoT. We will observe the

GenAISys’s “thinking process” displayed in real time through our interactive interface. The

process is transparent and explainable, as it is visualized in real time within the IPython

interface. We can see what the system is doing and isolate any function to investigate

the process if necessary.

Another critical aspect of CoT is its intermediate reasoning:

•	 Each step in a CoT process builds on the previous one, but not all steps are static. For

instance, when DALL·E generates an image, it creates something entirely new—not re-

trieved from a database. This relies on a generative AI model, not pre-programmed content.

Chapter 5 175

•	 The next step in the process isn’t pre-generated, like a fixed list of messages. For example,

when DALL-E generates an image, we will ask GPT-4o to perform a storytelling task that

it will invent ex nihilo based on the input it received. Alternatively, we could ask GPT-4o

to simply describe the image—without needing to change or fine-tune the model.

CoT reasoning offers cognitive alignment closer to human thinking patterns. We humans break

monolithic problems into smaller parts, process each part, and then assemble the intermediate

conclusions to reach a global solution. The human-like framework of the CoT process we are

building in this chapter makes the GenAISys more intuitive and creative, mimicking (not replacing)

human problem-solving methods. In the following chapters, notably in Chapter 6, we’ll further

expand and enhance the CoT reasoning capabilities. The takeaway here is that CoT involves

sequences of tasks, but in a more flexible and creative way than classical non-AI or AI sequences.

Let’s move on and define the cognitive flow of CoT reasoning.

Cognitive flow of CoT reasoning
Instead of the traditional term flowchart, we’ll use the term cognitive flow to describe the CoT

process we are implementing. This term emphasizes the human-like reasoning and dynamic prob-

lem-solving capabilities of our AI agent, differentiating clearly from classical software flowcharts.

A classic flowchart provides a visual representation of a sequence of functions. A reasoning CoT

cognitive flow or cognitive workflow maps the logical progression of the AI agent’s thought process

from one step to another. The cognitive flow shows how the AI agent mimics human reasoning.

Let’s first walk through the cognitive flow we will implement in Python, visualized in Figure 5.9.

The Python functions we’ll use reside in reason.py, located in the commons directory, and are

described in detail in the OpenAI subsection of this chapter’s Setting up the environment section.

Adding Multimodal, Multifunctional Reasoning with Chain of Thought176

Figure 5.9: Cognitive flow of the CoT process

Chapter 5 177

The cognitive flow for our CoT reasoning process consists of five main phases, orchestrated by

the chain_of_thought_reasoning() function. This sequence begins with Start.

Start
The CoT reasoning process begins when it receives input text provided by the AI agent. The AI

agent analyzes the user input and then triggers the CoT function, as described earlier in the Layer

2: AI agent section. At the start of the CoT function, two key initializations occur: the reasoning

memory (steps = []) is initialized, and the reasoning display widget is activated within the

IPython interactive interface:

steps = []

 # Display the reasoning_output widget in the interface

 display(reasoning_output)

display(reasoning_output) triggers the display widget, which enables real-time updates

in the interactive IPython interface, ensuring the CoT process remains transparent and easily

interpretable by users.

Step 1: ML-baseline
The first step, ML-baseline, activates the machine learning endpoint (machine_learning.ml_

agent()). It utilizes a decision tree classifier to analyze customer data dynamically and predict

activities of interest. The function takes a location (for example, "Rome") and "ACTIVITY" as the

target column for the prediction:

Step 1: Analysis of the customer database and prediction

 steps.append("Process: Performing machine learning analysis of the
customer database. \n")

 with reasoning_output:

 reasoning_output.clear_output(wait=True)

 print(steps[-1]) # Print the current step

 time.sleep(2) # Simulate processing time

 result_ml = machine_learning.ml_agent("Rome", "ACTIVITY")

 steps.append(f"Machine learning analysis result: {result_ml}")

This block of code is repeated for each reasoning step:

•	 Each part of the thought process begins with a comment like so: # Step 1: Analysis
of the customer database and prediction

Adding Multimodal, Multifunctional Reasoning with Chain of Thought178

•	 steps.append("Process: Performing machine learning analysis of the customer

database. \n") appends a description of the step to the reasoning memory step list

•	 with reasoning_output initiates a code block for the display widget

•	 reasoning_output.clear_output(wait=True) clears reasoning_output t

•	 print(steps[-1]) # Print the current step prints the most recent step added

•	 time.sleep(2) # processing time introduces a two-second delay

•	 result_ml =machine_learning.ml_agent("Rome", "ACTIVITY") calls ml_agent

•	 steps.append(f"Machine learning analysis result: {result_ml}") appends the

result returned by the machine learning function to the list of steps

The output from machine_learning.ml_agent, which predicts the top customer-preferred activity

for the location "Rome", becomes the input for the subsequent step, suggesting creative activities.

Before moving on to the next step, let’s briefly explore the underlying decision tree classifier

inside machine_learning.py.

Decision tree classifier
A decision tree classifier is well suited for our task because it is a machine learning model that

makes predictions by splitting data into a tree-like structure based on feature values. It works by

recursively choosing the optimal feature at each split until it reaches a defined stopping condi-

tion, such as a maximum depth or a minimum sample size per leaf. At each step, the possibilities

narrow down until a single prediction emerges.

To run it, we first import the required libraries for handling data and building the decision tree.

We also disable warnings to avoid cluttering the IPython output:

import pandas as pd

import random

from sklearn.preprocessing import LabelEncoder # For encoding categorical
variables

from sklearn.tree import DecisionTreeClassifier # For training the
Decision Tree model

import warnings

warnings.simplefilter(action='ignore', category=UserWarning)

Next, we define our classifier function, ml_agent(), with two parameters:

def ml_agent(feature1_value, feature2_column):

Chapter 5 179

The two parameters are the following:

•	 feature1_value: The value of the location we want to predict activities for.

•	 feature2_column: The target column ("ACTIVITY") we want to predict.

The function starts by loading the customer activities dataset into a pandas DataFrame:

 # Load the dataset from a CSV file into a DataFrame

 df = pd.read_csv("customer_activities.csv")

Then, we encode the categorical variables (LOCATION and ACTIVITY) for processing:

 # Create LabelEncoder objects for encoding categorical variables

 le_location = LabelEncoder()

 le_activity = LabelEncoder()

Encode categorical values

 df["LOCATION_ENCODED"] = le_location.fit_transform(df["LOCATION"])

 df["ACTIVITY_ENCODED"] = le_activity.fit_transform(df["ACTIVITY"])

If no specific location (feature1_value) is provided, the function selects the most frequent lo-

cation by default:

Select default location if feature1_value is empty

 if not feature1_value.strip(): # If empty string or only spaces

 feature1_value = df["LOCATION"].mode()[0] # Most common location

We then prepare the features (X) and the target variable (y) from our encoded data:

 # Select the encoded 'LOCATION' column as the feature (X)

 X = df[["LOCATION_ENCODED"]]

 # Select the encoded 'ACTIVITY' column as the target variable (y)

 y = df["ACTIVITY_ENCODED"]

With our data prepared, we train the decision tree model:

 # Train a Decision Tree Classifier on the dataset

 model = DecisionTreeClassifier(random_state=42)

 model.fit(X, y)

Setting random_state=42 ensures consistent results each time we run the code. Now, we encode

the provided (or default) location input to prepare it for prediction:

 # Encode the input location using the same LabelEncoder

 feature1_encoded = le_location.transform([feature1_value])[0]

Adding Multimodal, Multifunctional Reasoning with Chain of Thought180

The Python .transform method on the le_location object converts the categorical string into

its unique integer code.

The function is now ready to predict the most probable activity and convert it back to its original

label. We will use the Python .predict method of our trained model to see what it predicts for

this new data point:

 # Predict the encoded activity for the given location

 predicted_activity_encoded = model.predict([[feature1_encoded]])[0]

 # Convert the predicted numerical activity back to its original label

 predicted_activity = le_activity.inverse_transform(

 [predicted_activity_encoded]

)[0]

Finally, the function constructs a customer’s descriptive output message tailored to the predicted

activity:

 # Generate output text

 text = (f"The customers liked the {predicted_activity} because it
reminded them of how "

 f"our democracies were born and how it works today. "

 f"They would like more activities during their trips that
provide insights into "

 f"the past to understand our lives.")

This descriptive output is returned to the CoT function:

 return text

To invoke the classifier from the CoT function, we use the following:

result_ml = ml_agent("", "ACTIVITY")

print(result_ml)

We’re letting the classifier find the location and activity. The expected output, in this case, will

be the following:

Machine learning analysis result: The customers liked the Forum of Rome
because it reminded them of how our democracies were born and how it works
today. They would like more activities during their trips that provide
insights into the past to understand our lives.

Chapter 5 181

Let’s now use the output of this step to suggest activities.

Step 2: Suggest activities
This step follows the same logic and structure as Step 1. The name of the process is as follows:

steps.append("Process: Searching for activities that fit the customer
needs. \n")

The output from Step 1 (result_ml) becomes part of the instruction sent to GPT-4o to augment

the input context. The combined query (umessage) for GPT-4o becomes as follows:

umessage = (

 "What activities could you suggest to provide more activities and
excitement in holiday trips."

 + result_ml

)

At this stage, the instructions are tailored specifically for our travel-focused domain. In Chapter

6, we’ll evolve these instructions to become dynamic event-based variables. Here, we continue

using the established GenAISys OpenAI API call we built in earlier chapters:

mrole = "system"

 mcontent = (

 "You are an assistant that explains your reasoning step by step
before providing the answer. "

 "Use structured steps to break down the query."

)

 user_role = "user"

 task_response = make_openai_api_call(umessage, mrole, mcontent, user_
role)

The output received from GPT-4o (task_response) will serve as the input for the next step (Step

3). The method of appending and displaying the reasoning steps remains consistent with Step 1.

Step 3: Generate image
This step begins by taking the detailed suggestion received from the previous step (task_response)

and passing it directly as the prompt to DALL-E’s image generation function. The structure and

logic here are consistent with the previous steps, now focused on generating images:

prompt = task_response

image_url = generate_image(prompt)

Adding Multimodal, Multifunctional Reasoning with Chain of Thought182

Once generated, the image is downloaded and saved locally as c_image.png. This image file will

then be displayed through the IPython interface if the Files widget is checked, as explained in

the Layer 1: IPython interface section:

 …

 save_path = "c_image.png"

 image_data = requests.get(image_url).content

 with open(save_path, "wb") as file:

 file.write(image_data)

 steps.append(f"Image saved as {save_path}")

 …

With the image now generated and saved, the CoT process advances to analyzing this newly

created image.

Step 4: Analyze image
The input for this analysis step is the URL of the image generated in Step 3, stored as image_url.

As mentioned earlier, in this notebook, the query text is currently set as a generic, yet travel-spe-

cific, request to GPT-4o. In subsequent chapters, this query text will become event-driven and

more dynamic.

For our image analysis, we instruct the generative AI model to craft an engaging story based on

the generated image:

query_text = "Providing an engaging story based on the generated image"

The code encapsulating the instructions is the same as in the previous steps. The CoT function

now activates the image_analysis function as described previously in the Image generation and

analysis section:

 response = image_analysis(image_url, query_text)

The output is returned to the response variable and saved in the image_text.txt file for further

use. This marks the completion of the CoT reasoning steps.

Chapter 5 183

End
Upon completing all reasoning tasks, the CoT function signals the end of the process by clearing

and updating the IPython display:

 # Clear output and notify completion

 with reasoning_output:

 reasoning_output.clear_output(wait=True)

 print("All steps completed!")

 return steps

The IPython interface takes over from here. Let’s now run the CoT from a user perspective.

Running CoT reasoning from a user perspective
In this section, we’ll seamlessly run the complex GenAISys we’ve been building since the begin-

ning of the book. A single prompt will trigger the entire CoT process.

We’ll simulate a user activating the reasoning capabilities of the GenAISys to obtain comprehensive

ideation for an online travel agency. Specifically, we aim to predict customer-preferred activities,

generate engaging images, and create storytelling narratives to evoke customers’ episodic mem-

ories. These episodic memories might be real-world experiences or dreams of visiting a place and

engaging in particular activities.

To run this scenario, make sure to check the AI Agent and Files checkboxes and enter the follow-

ing prompt carefully:

Use reasoning to suggest customer activities.

The Use, reasoning, customer, and activities keywords will be recognized by the AI agent

and trigger the CoT process we built in this chapter. Alternatively, we could have implemented

a drop-down menu or performed a similarity search in the Pinecone index to retrieve specific in-

struction scenarios. STT input is also possible. In this chapter, however, we’ll use typed prompts

with keywords to clearly illustrate the CoT process.

 In Chapter 7, we’ll build a central keyword registry and an orchestrator to further

optimize the AI agent’s decision-making process.

Adding Multimodal, Multifunctional Reasoning with Chain of Thought184

Once the user presses Enter, all we have to do is sit back and watch just as we would with online

ChatGPT-like copilots. The first process is to analyze the customer base to find the top-ranking

activity based on daily data, as shown here.

Figure 5.10: Searching for activities

Once the whole process is complete, the decision tree classifier returns the results:

..Machine learning analysis result: The customers liked the Forum of Rome
because it reminded them of how…

The next stage involves searching for suitable activities matching customer preferences:

Figure 5.11: Searching for activities matching customer needs

The creative output from GPT-4o provides structured steps to enhance the online offerings:

Activity suggestions: To enhance holiday trips with more activities,
especially focusing on cultural experiences, we can consider a variety
of options. Here's a structured approach to brainstorming and suggesting
activities:

…### Step 3: Suggest Activities

1. Historical Tours and Sites:

- Athens, Greece: Visit the Acropolis and the Agora, where democracy was
born. Include guided tours that explain the significance of these sites.

- Philadelphia, USA: Explore Independence Hall and the Liberty Bell,
focusing on the birth of modern democracy.

- Westminster, UK: Tour the Houses of Parliament and learn about the
evolution of the British democratic system…

Chapter 5 185

Next, the CoT instructs DALL-E to generate an engaging image based on these suggested activities:

Figure 5.12: Image generation based on the output of the previous step

Because the Files checkbox is checked, the generated image is displayed. This image is a rather

creative one and will vary with each run:

Figure 5.13: A cultural and historical image

Adding Multimodal, Multifunctional Reasoning with Chain of Thought186

In this case, the image contains text such as …understanding of history and its impact on

modern life., which perfectly fits our request.

The next process involves asking GPT-4o to create a narrative for a storytelling promotion that

leverages episodic memory of past real-life experiences or imagined trips:

Figure 5.14: Creating an engaging story based on the image generated

The narrative output from GPT-4o, shown, is illustrative and will vary, as noted earlier:

…Story response: In the bustling town of New Haven, a place where history
and technology intertwined, a young historian named Clara discovered an
ancient artifact that would change everything. The artifact, a mysterious
tablet, was said to hold the secrets of the past, capable of bringing
historical figures to life through augmented reality…

Once the CoT sequence concludes, the GenAISys maintains its reasoning state, waiting for new

standalone prompts or further CoT runs:

Figure 5.15: Reasoning is persistently activated in the GenAISys

The Load and display the conversation history and Load and summarize the conversation history sec-

tions in the notebook utilize the same functions detailed in Chapter 4.

We’ve now successfully built a small-scale ChatGPT-like GenAISys equipped with custom features,

including multi-user support, domain-specific RAG, and tailored CoT capabilities. In the upcom-

ing chapters, we’ll apply this GenAISys framework across several practical business domains.

 Note that each run might produce a different output due to context variations and

the stochastic (probabilistic) nature of generative AI models such as GPT-4o.

Chapter 5 187

Summary
In this chapter, we have completed the basic framework of the GenAISys, consisting of three lay-

ers. The first layer is an IPython interactive interface that acts as an orchestrator. It now includes

voice capability, file display, and CoT features, alongside user inputs, user selections, and the AI

agent widget.

The second layer is the AI agent orchestrator, triggered by user prompts. This demonstrates that

within the GenAISys, the boundaries between orchestration and control functions are somewhat

blurred due to the interactive nature of these components. The AI agent distributes tasks between

the Pinecone index for querying and the OpenAI API agent for generative tasks, such as content

and image generation. The AI agent can also trigger the CoT process, and we will further enhance

its capabilities in the following chapters.

The third and final layer contains the core functionality of the GenAISys, which involves AI workers

powered by GPT-4o and DALL-E. In this chapter, we introduced DALL-E for image generation

and utilized GPT-4o to provide insightful comments on these images. Additionally, we imple-

mented a decision tree classifier to predict customer activities, incorporating machine learning

capabilities into our GenAISys.

Introducing the CoT feature marked our initial step toward creating seamless reasoning capa-

bilities from an end user perspective. Complex tasks require sophisticated AI systems that can

emulate human reasoning. Therefore, we will expand upon the reasoning abilities of the GenAISys,

among other features, in the next chapter.

Questions
1.	 The seamless interface of an online generative AI system shows that the system is easy

to build. (True or False)

2.	 Selecting a large language model (LLM) is sufficient to build a GenAISys. (True or False)

3.	 A generative AI application requires an event-driven interactive interface. (True or False)

4.	 An AI system can mimic human reasoning. (True or False)

5.	 A chain-of-thought (CoT) process is just a sequence of classical functions. (True or False)

6.	 A CoT can process natural language but not computer vision. (True or False)

7.	 A CoT is a cognitive agent that can include non-AI or AI functions. (True or False)

Adding Multimodal, Multifunctional Reasoning with Chain of Thought188

8.	 Reasoning GenAISys can group a set of tasks for an end user. (True or False)

9.	 The continual acceleration of the economy requires more automation, including AI. (True

or False)

10.	 A human-centric reasoning GenAISys can boost the productivity of a team. (True or False)

References
•	 Chan, Andy, Cassidy Ezell, Michael Kaufmann, Kevin Wei, Laurel Hammond, Hunter Brad-

ley, Elliot Bluemke, Nandhini Rajkumar, David Krueger, Nikita Kolt, Lukas Heim, and

Markus Anderljung. “Visibility into AI Agents.” In Proceedings of the 2024 ACM Conference

on Fairness, Accountability, and Transparency (FAccT ‘24), Rio de Janeiro, Brazil, June 3–6,

2024. New York: ACM, 2024. https://arxiv.org/pdf/2401.13138.

•	 Putta, Praveen, Eric Mills, Naman Garg, Soham Motwani, Chelsea Finn, Divyansh Garg,

and Rohan Rafailov. “Agent Q: Advanced Reasoning and Learning for Autonomous AI

Agents.” Last modified 2024. https://arxiv.org/abs/2408.07199.

•	 Wiesinger, Jannis, Peter Marlow, and Vladimir Vuskovic. “Agents.” Kaggle Whitepaper.

Accessed July 8, 2025. https://www.kaggle.com/whitepaper-agents.

•	 OpenAI. OpenAI API Documentation. Accessed July 8, 2025. https://platform.openai.

com/docs/api-reference/introduction.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name.

Note: Keep your purchase invoice ready before you start.

https://arxiv.org/pdf/2401.13138
https://arxiv.org/abs/2408.07199
https://www.kaggle.com/whitepaper-agents
https://platform.openai.com/docs/api-reference/introduction
https://platform.openai.com/docs/api-reference/introduction
http://packtpub.com/unlock

6
Reasoning E-Marketing AI
Agents

The foundational concept of a successful advertising campaign is memory. Think about the adver-

tisements you saw yesterday. What about those from one year ago or even several years ago? The

ads you remember most vividly are the ones most effective for you, but perhaps not for someone

else. The primary challenge for any advertising agency is designing promotional content that

triggers positive reactions in diverse individuals. More crucially, successful marketing campaigns

strive to make consumers remember brands, products, and services.

The Nielsen Neuroscience team (Brandt & Nieuwenhuis, 2017) explains why memory is so import-

ant in advertising. They demonstrate that memory decays significantly after just 24 hours, making

it difficult for advertisements to have lasting effects. Several factors, including repetition and the

emotional or intellectual impact of the content, can enhance memory retention. The emergence

of agentic systems such as the GenAISys has reshaped the marketing landscape because these

systems can replicate human-like expert marketing reasoning.

In this chapter, we will enhance the GenAISys we’ve been building throughout previous chap-

ters. First, we’ll design a consumer memory agent tailored to a specific market segment. The

goal of this agent is to analyze how consumers encode promotional messages. We’ll begin by

exploring why memory matters and how it is structured, examining key memory categories such

as short-term, long-term, explicit, and implicit memory, as well as important dimensions such

as intellectual and emotional encoding. Next, we’ll expand the architecture of the GenAISys by

integrating a deeper understanding of consumer memory into its knowledge base. We’ll then

develop a strategic consumer memory agent leveraging the multimodal capabilities introduced

Reasoning E-Marketing AI Agents190

in earlier chapters. This agent will employ a neuroscience-inspired approach to craft customized

marketing messages. By introducing meta-cognition through OpenAI’s advanced o3 reasoning

model, we will enable the agent to perform sophisticated, near-human self-reflection within its

multistep CoT reasoning process.

Further, we will transform our generative AI model into a neuroscientific-like agent capable of

analytic reasoning rather than mere content generation. Complex systems—like the human

brain—are more than the sum of their parts, and the same applies to machine intelligence. The

strategic consumer memory agent using OpenAI’s o3 reasoning model will apply complex neu-

roscience-informed prompts to analyze consumer memory encoding patterns in hotel reviews.

The resulting insights will feed into a multimodal thread-of-reasoning pipeline, building upon

the CoT framework introduced in Chapter 5, Adding Multimodal, Multifunctional Reasoning with

Chain of Thought. Ultimately, the GenAISys will leverage this detailed memory analysis to produce

tailored marketing content using GPT-4o, accompanied by images generated by DALL-E.

Finally, we’ll further enhance the IPython interactive interface by adding new features, including

a widget capable of triggering agentic meta-cognition for memory analysis and customer service

tasks. Users will have the option to analyze various types of content for memory-related insights

or initiate customer-service-oriented CoT interactions.

By the end of this chapter, you will have learned how to build a customized, reasoning-driven

GenAISys applicable to any domain based on the architecture of our consumer memory agent.

We’ll construct it step by step.

This chapter covers the following topics:

•	 The importance of consumer memory in marketing

•	 The high-level structure of human memory

•	 Building a strategic CoT consumer memory agent

•	 Analyzing hotel reviews with CoT

•	 Designing neuroscientific-like complex prompts

•	 Using o3, OpenAI’s reasoning model that can analyze content in depth

•	 Using OpenAI’s GPT-4o to generate content and DALL-E to generate images

•	 Assembling reasoning and generation in a thread-of-reasoning function

•	 Generalizing the consumer memory agent CoT to any content

•	 Enhancing the IPython interactive interface

Chapter 6 191

Let’s begin by designing the enhanced GenAISys interface and its AI-driven functionalities.

Designing the consumer GenAISys memory agent
Consumer neuroscience can significantly enhance brand memorability through emotionally

resonant, personalized messaging. In this chapter, we begin by analyzing how consumers encode

memories. Nicks and Carriou (2016) demonstrate that effective consumer neuroscience leverages

storytelling through narrative transportation, where consumers become emotionally engaged

and vividly remember promotional messages.

In our implementation, we’ll deeply analyze how consumers encode memories, maintaining an

authentic approach. If a consumer expresses dissatisfaction with a service, our system will tailor

messages to emphasize improved offerings. Our goal is to create genuine connections through

memorable, emotionally resonant messages.

In this section, we will describe how we enhance the GenAISys we have been building in the

previous chapters:

•	 Consumer-memory agent use case: Shows how an AI-driven agent can apply memory

principles—drawn from short-term and long-term memory (LTM) frameworks—to

interpret consumer feedback.

•	 Defining memory structures: This extends beyond the basic categories of short-term

memory (STM), LTM, episodic memory, and semantic memory that we previously ex-

amined and introduces new categories and dimensions, providing a deeper analysis of

the input.

•	 Enhancing the architecture of the GenAISys: This adds new functionality to trigger the

AI agent and integrates a new CoT scenario.

Let’s first explore the consumer memory agent use case.

Consumer-memory agent use case
The use case in this chapter demonstrates how the GenAISys can be enhanced with a CoT consum-

er memory agent. Our goal is to understand a specific consumer’s needs when selecting a hotel,

using detailed analyses of hotel reviews. The system we develop performs comprehensive content

analysis, evaluates sentiment, and generates personalized marketing content. The CoT agent

initiates this process with a detailed memory and sentiment analysis of a hotel review. It identi-

fies psychological features, emotional markers, and specific memory tags, assigning a sentiment

score to each analyzed segment. These scores are combined to produce an overall sentiment score

Reasoning E-Marketing AI Agents192

and a scaled rating (0–5). Through this approach, the agent effectively captures how particular

hotel experiences are perceived, emotionally processed, and retained in a consumer’s memory.

Based on these extracted insights and the resulting cognitive profile, the agent uses the scaled

rating to determine the appropriate marketing strategy. Ultimately, the consumer memory agent

produces tailored promotional content, including a customized message accompanied by a rel-

evant image. For instance, if the analysis reveals a customer who generally dislikes hotels, the

travel agency can emphasize alternative accommodations or improved services that the customer

has previously mentioned positively. In such cases, the agent generates a personalized message

with an engaging image, as illustrated in Figure 6.1.

Figure 6.1: Custom content-based image generated by DALL-E

The agent crafts a warm, personalized message by analyzing the cognitive profile identified from

customer hotel reviews:

Customer message: Dear Customer,

We invite you to consider a unique vacation experience that goes beyond
the typical hotel stay. Imagine the warmth and comfort of staying with
family or friends, where every moment is filled with genuine connections

Chapter 6 193

and cherished memories. From waking up to the aroma of freshly brewed
coffee made just the way you like it to sharing home-cooked meals and
laughter around a family table, this experience offers a heartfelt
alternative to the impersonal nature of hotels. Embrace the spontaneity
and freedom of living in the moment, surrounded by those who matter most.
Whether it's a cozy evening of board games or a relaxed afternoon in the
backyard, staying with loved ones provides a true home away from home.
This vacation, choose the warmth of a family home and create memories that
will last a lifetime. Book your stay with loved ones today and rediscover
the true meaning of home.

Warm regards,

[Your Company Name]

Let’s now define the memory structure that the consumer memory agent will use.

Defining memory structures
Let’s now expand upon the memory categories introduced in Chapter 1 by outlining the human

memory structures essential for building our consumer memory agent. Human memory is mul-

tifaceted: STM temporarily captures the information necessary for immediate tasks or emotional

processing, quickly fading without reinforcement; LTM stores significant events, knowledge, and

experiences over extended periods; semantic memory stores general knowledge and facts, inde-

pendent of personal experience; episodic memory captures personally experienced events with

context and detail; procedural memory enables unconscious retrieval of tasks, such as walking

or driving; emotional memory categorizes experiences based on emotional intensity—positive

or negative; and explicit memory involves conscious recall, whereas implicit memory operates

unconsciously.

 Generative AI is stochastic, so the same input will not necessarily generate the same

output. The response may thus change from one run to another.

Reasoning E-Marketing AI Agents194

Our consumer memory agent will analyze consumer content using a flexible combination of these

memory categories, as shown in Figure 6.2. The categorization provides the o3 OpenAI reasoning

model sufficient freedom to interpret consumer data effectively.

Figure 6.2: The memory categories of the memory agent

The main categories at the upper level are the following:

•	 Memoryless for systems or humans that do not remember information from a past event.

These are events that we most forget, such as how many times we blinked yesterday.

•	 Short-Term Memory for the temporary storage of information to perform a task or the

process of emotion. This memory decays rapidly if no event stimulates it again. It could

be the working memory of reading a long text.

Chapter 6 195

•	 Long-Term Memory for information we store over long periods, from days to years. This

is a vital memory, such as knowing which country we are in, our age, and who our family

members are.

•	 Reality Memory is what we know for sure related to actual events or facts, and the ex-

ternal world.

•	 Fiction Memory includes imagined or hypothetical internal events or narratives.

•	 Time Memory is critical to distinguish past, present, and future events. Otherwise, we

would think that we had already eaten what we were going to eat for lunch tomorrow.

Notice how memoryless, short-term, and long-term memory form a subset (light green), and

reality, fiction, and time memory (light orange) are all connected. These categories aren’t isolat-

ed; they interconnect dynamically in real life. Our memory, in other words, doesn’t function in

subsets but with what we can call tags in AI. A memory can be a combination of multiple tags:

•	 A memoryless fiction, such as a dream

•	 A short-term reality, such as reading the news

•	 A long-term fiction, such as a novel we read a long time ago

When examining these memory subcategories, we quickly realize the vast number of possible tag

combinations with the main memory categories—such as semantic STM or episodic LTM. Addi-

tionally, memories can seamlessly blend subcategories; for instance, the phrase “I visited Rome

last year” combines episodic, semantic, and temporal memory tags simultaneously. Moreover,

our memories range from implicit (subconsciously blinking our eyes all day) to explicit (inten-

tionally blinking due to an irritation).

In our consumer memory agent, we will request a thorough analysis of content, assigning appro-

priate memory tags to each text segment. However, even this detailed tagging is not sufficient by

itself. To effectively capture consumer experiences, we will enrich each memory tag with three

analytical dimensions:

•	 Intellectual dimension: Identifies thoughts, logic, and reasoning within the text.

•	 Emotional dimension: Pinpoints emotions, feelings, and overall mood—critical for effec-

tive consumer engagement—and provides a quantifiable sentiment score ranging from

0 to 1, scalable to a familiar 1–5 rating used in customer satisfaction forms.

•	 Physical dimension: Highlights sensory experiences and physical sensations, such as “it

was too cold to go swimming” or “my back hurt after sleeping in that hotel bed.”

Reasoning E-Marketing AI Agents196

With these enhancements in mind, let’s now explore how we’ll integrate them into the architec-

ture of our evolving GenAISys.

Enhancing the architecture of the GenAISys
In this chapter, we will build upon the existing three-layer architecture of the GenAISys, as illus-

trated previously in Figure 5.3 and reproduced here:

Figure 6.3: The three layers of the event-driven GenAISys

Our approach will be bottom-up, starting from the foundational functions and proceeding upward

through the AI agent to the GenAISys interface:

•	 Layer 3 (functions and agents): Here, we will introduce additional functionalities into

our custom OpenAI library (reason.py), specifically tailored for the consumer memory

agent and CoT reasoning. We will also develop a standalone memory analysis function

that provides neuroscientific-like analyses applicable to any content.

•	 Layer 2 (AI agent): This layer manages the behavior and decisions of our GenAISys. We

will establish clear input triggers and naming conventions to activate and control the AI

agent effectively.

Chapter 6 197

•	 Layer 1 (IPython interface): The interactive interface will be expanded to facilitate user

interaction. We will add a new widget, allowing users to conveniently select how the

consumer memory agent is invoked. Initially, we will focus on hotel reviews and subse-

quently generalize to any form of input.

Let’s now begin building the consumer memory agent.

Building the consumer memory agent
In this section, we take our GenAISys to the next level by equipping it with neuroscientific capa-

bilities for analyzing hotel reviews. The consumer memory agent will capture a user’s cognitive,

emotional, and physical mindset, decoding each review segment through a six-step CoT process,

as illustrated in Figure 6.4:

Figure 6.4: Chain-of-thought process of the memory agent

Reasoning E-Marketing AI Agents198

The consumer memory agent’s CoT will use OpenAI’s o3, GPT-4o, and DALL-E to run its six steps:

•	 Step 1: Memory and Sentiment Analysis: The agent will analyze the content of the hotel

review with a complex memory structure system message. It will analyze and tag the

content segment by segment.

•	 Step 2: Extract Scores: The agent processes the output of Step 1 to extract the sentiment

scores of each content segment.

•	 Step 3: Statistical Analysis: The agent uses the scores of all the tagged segments to pro-

duce an overall cognitive score for the content.

•	 Step 4: Creating Content: The agent now has a decision to make based on the score. If the

score exceeds a positive threshold, it will generate a message encouraging the consumer

to select hotels. However, if the score is negative, a guest house message will be created.

Once the decision is made, the agent will use the consumer’s memory tags to create a

tailored promotional message.

•	 Step 5: Image Creation: The agent now uses the output of Step 4 to create an image that

will fit the consumer’s mindset.

•	 Step 6: Message Creation: The agent now has all the information necessary to generate

a custom message for the consumer.

After developing these steps individually, we’ll integrate them fully in the upcoming section, Ge-

nAISys interface: From complexity to simplicity, aiming to generalize the CoT functionality beyond

hotel reviews.

To begin our journey, open the 1_Building_the_Consumer_Memory_Agent.ipynb notebook, which

reuses previously built functionality, within the Chapter06 directory on GitHub (https://github.

com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main). We will first

download a dataset of hotel reviews to provide inputs to the AI agent.

The dataset: Hotel reviews
We will be using synthetic hotel reviews to build the memory agent. In this chapter, we will

process hotel reviews but also generalize the memory structure of the agent to other content we

wish to analyze. For copyright reasons, the dataset we are using is a synthetic dataset of reviews

created manually and with a generative AI copilot.

If you wish to explore more datasets, you can use a similar dataset containing TripAdvisor hotel

reviews available on Kaggle for non-commercial private implementations at https://www.kaggle.

com/datasets/andrewmvd/trip-advisor-hotel-reviews.

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://www.kaggle.com/datasets/andrewmvd/trip-advisor-hotel-reviews
https://www.kaggle.com/datasets/andrewmvd/trip-advisor-hotel-reviews

Chapter 6 199

Run the Setting up the Environment section on GitHub, identical to Chapter 5, and download the

dataset directly from the GitHub repository:

download("Chapter06","hotel_reviews.csv")

We will process the dataset with a pandas DataFrame. The program now loads the CSV file and

displays the data:

import pandas as pd

Load the CSV file into a Pandas DataFrame

dfta = pd.read_csv('/content/hotel_reviews.csv',sep=',')

display the DataFrame

dfta

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book.

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Reasoning E-Marketing AI Agents200

This dataset contains two primary columns: Review and Rating. For instance, record 0 has a

relatively constructive rating of 3, while record 1 shows a clearly positive rating of 5:

Figure 6.5: Excerpt of the hotel review dataset

Ratings alone, however, don’t provide sufficient depth—we require a nuanced sentiment analysis

to fully grasp why a customer was satisfied or dissatisfied. We will choose a challenging review

to begin our analysis:

index_number = 0 # Specify the index number

The program now extracts the review and its rating:

 # Extract the desired fields

 review = row['Review']

 rating = row['Rating']

 # Display the results

 print(f"Review: {review}")

 print(f"Rating: {rating}")

except IndexError:

 print(f"Error: Index {index_number} is out of bounds for the
DataFrame.")

except KeyError as e:

 print(f"Error: Column '{e}' not found in the DataFrame.")

The output displays the review and its rating:

Review: We got a nice hotel. The parking was rather expensive. However, we
got a good deal for my birthday. We arrived in during the night because
of a late flight but the parking was open 24hours The check in was rapid.
The room was a large size. Cool. But we didn't get the view expected. The
bed was super comfortable and got a nice sleep for a few hours but then
there was a raucous of a noisy crowd going to bed late. Anyway the price
was acceptable and we made it to the shopping mall next to the hotel which

Chapter 6 201

reminded me of the one we had at home.

Rating: 3

We have chosen a difficult review because it contains both negative and positive sentiment. The

negative aspect of the review will challenge the agent to generate constructive solutions. Before

continuing, analyze the memory tags, sentiment scores, and dimensions of each review segment

yourself. This exercise clarifies memory category usage and provides a benchmark for comparing

your insights to the agent’s analysis. Set the extracted review as the initial input:

input1=review

We will now design a complex system message for Step 1 for input1.

Step 1: Memory and sentiment analysis
This step introduces advanced reasoning to our consumer memory agent by incorporating me-

ta-cognition and meta-reasoning through the OpenAI o3 reasoning model. In other words, the

agent won’t simply process text—it will actively reflect on its internal reasoning, performing a

segment-by-segment analysis to categorize memory types and assign sentiment scores.

Specifically, the o3 model will operate within our carefully structured system message, which we

will design in detail. This system message guides the model clearly, prompting deep reasoning

and ensuring it assigns memory tags accurately based on human-like cognitive processes. We

are definitely in the era of reasoning and self-reflecting AI!

In this section, we will do the following:

•	 Design a complex system message that incorporates the detailed memory structures

defined earlier. This message, called system_message_s1, will be stored separately in a

Python file for modularity.

•	 Rely on the reasoning abilities of OpenAI’s o3 to do the heavy lifting and execute detailed

segment-level analysis, relieving us from manual interpretation.

Let’s now construct this detailed system message step by step.

 Note that we use o1 as an umbrella term to signal to the LLM its role as a reasoning

model. Additionally, the LLM may refer to o1 itself in responses though we call o3

as much as possible in the API.

Reasoning E-Marketing AI Agents202

Designing a complex system message for Step 1
We must design a system message comprehensive enough for the model to deeply understand

and execute a neuroscience-inspired memory analysis. To achieve this, we carefully structure

the message into clearly labeled sections, each guiding the agent through different aspects of

the analysis.

0. Model introduction and role of the agent
The first line sets the tone for the agent at two levels. The first level provides the agent with the

necessary concepts to understand advanced memory analysis for this task. The second level

describes the role of the agent in detail:

You are a generative AI model, an advanced memory-analysis model. Your
role is to examine **each segment** of an incoming text and generate a set
of "memory encoding tags," similar to how the human brain encodes memories
in neuroscience. For every segment in the input, you will identify which
categories apply, discuss the rationale, and assign additional metadata
(dimension, sentiment, etc.).

Now, let’s go through the instructions to grasp what the agent is learning through this first part

of the message:

•	 generative AI model, an advanced memory-analysis model: We are setting the role

of the system in a special way. We are asking the model to think, not just to generate text.

For this task, we don’t want the model to be created but to analyze and reason.

•	 examine **each segment**: We are teaching the model to replicate a neuroscience ap-

proach. Our brain encodes information in discrete packages. In this case, we are asking

the model to mimic human memory processes. Each segment of text can be a sentence,

a sentence piece, or a paragraph. This way, the model will analyze the text in a manner

similar to how a human brain encodes information in independent packages.

•	 generate a set of "memory encoding tags," similar to how the human brain

encodes memories: Human brains encode memories with tags, a term we can use at a

high level without going into the biological process. Our brains apply tags to every bit

of information that they encode to differentiate a past event from a future event, for ex-

ample, from semantic data or personal emotional experiences. These tags represent the

categories of memory we are looking for in human-generated text.

Chapter 6 203

•	 discuss the rationale, and assign additional metadata: The model must explain

the rationale behind the category of memory it tags. Each category, such as STM or LTM,

must be explained. We need to know why a memory tag was attributed to the segment.

The model is asked to add dimensions to its description, including intellectual and emo-

tional reasons.

1. Purpose
Line 3 is a header that shows the model that we are entering the first significant section of the

message:

1. Purpose

Line 4 defines the goal of o3, OpenAI’s reasoning model:

The goal is for you, O1, to perform an **in-depth memory analysis** of
each segment of the text. In other words, you will classify and label each
segment you find using specific memory categories (also called "memory
encoding tags"). This process provides insight into how different parts of
the text might be encoded in human memory.

Note that the message contains “o1,” which is used as an umbrella term for OpenAI’s reasoning

models here. The main idea is for the API to understand that we expect reasoning. This instruction

will activate reasoning no matter which reasoning model you select. The key parts of this Purpose

section insist on what we expect:

•	 in-depth memory analysis: We do not want a classical analysis but a reflection that goes

into the details of each segment.

•	 Classify and label each segment you find using specific memory categories:

This is a strong indicator of the memory categories the model is expected to tag. Once again,

we remind the agent that we don’t want to generate text but to classify and label segments.

•	 provides insight into how different parts of the text might be encoded in

human memory: This is an explicit indication that we expect human-like thinking and

replicates the way a brain encodes memories.

 You might notice a Markdown divider (---) in the code. It shows the model that

we are now moving to another topic. This may seem unimportant, but we need to

emphasize topic changes as we do when giving instructions to humans. Now, we

will give the model a purpose.

Reasoning E-Marketing AI Agents204

We now need to give the agent the heading it needs to learn the categories. The first lines provide

clear instructions. Now, we have reached section 2 of the message.

2. Memory encoding tags
We now teach the agent how to recognize different categories of human encoding tags. We are

getting to the core of human memory encoding. The memory categories are those discussed in

the Defining memory structures section of this chapter:

2. Memory Encoding Tags (Categories)

This heading is vital as the agent will learn the tags we expect by taking a hint from this heading.

Now, the agent has absorbed the heading. We then give the model a clear explanation of what

actions we expect:

Below is a list of memory categories you must use. Consider them your
"tagging schema." A single segment may exhibit one or more categories. If
no category seems relevant, you may provide the special tag "memoryless"
to indicate no significant memory encoding.

Let’s focus on the key parts of this message:

•	 tagging schema: Aligns the model with the way the human brain encodes different cat-

egories of memory, distinguishing the past from the present using tags

•	 A single segment may exhibit one or more categories: Explains to the model that

a memory can be encoded in more than one category, just like in a human brain

•	 If no category seems relevant … memoryless: Tells the model that it should assign

a memoryless tag if it cannot determine a category of a memory

We then clearly define the categories (e.g., STM, LTM, episodic memory, semantic memory, time

memory, reality memory, fiction memory, memoryless), as previously discussed:

1. **Short Term Memory (STM)**

 - Used for information that seems fleeting, recently introduced, or
relevant only in the immediate context.

…

8. **Memoryless**

 - If a segment does not appear to connect to any memory encoding or
is purely functional text (e.g., disclaimers, random filler), label it
"memoryless."

Chapter 6 205

The memory tags have been described but are insufficient to capture human memory, which

relies on other dimensions to encode events.

3. Dimensions
The dimensions section adds intellectual, emotional, and physical features to the agent’s inves-

tigation. The descriptions of these dimensions in the following message were described in the

Defining memory structures section earlier:

Dimension Descriptions

 1. Intellectual

 2. Logical, analytical, or factual thought processes.

 - Explanation: If the text focuses on reasoned arguments, data,

 or factual details, it should be labeled "Intellectual."

 3. Emotional

 4. Feelings, mood, or affective elements.

 - Explanation: If the text displays happiness, sadness, or other

 strong emotional content, "Emotional" is assigned.

 5. Physical (with Sensations

With that, we have defined the memory categories and additional dimensions. However, we also

need a more refined analysis of emotions.

4. Sentiment score
As defined in the Defining memory structures section, the sentiment score measures the emotional

value of a segment. It provides a numerical score between 0 (negative) and 1 (positive), or 0.5

(neutral) if no sentiment can be detected:

4. Sentiment Score

Assign each segment a **sentiment score** between **0.0** and **1.0**,
where:

 - **0.0** = very negative

 - **0.5** = neutral

 - **1.0** = very positive

If a segment is purely factual with no emotional valence, use 0.5
(neutral).

 Note that each section in the message begins and ends with clear Markdown indi-

cators that show a change in topic.

Reasoning E-Marketing AI Agents206

Next, we are going to ask for a specific response format.

5. Response format
We need the response to clearly display each segment of the original text, provide memory tags

for each segment, determine the dimension (intellectual, emotional, or physical) of each segment,

provide a sentiment score, and provide a brief explanation to justify the analysis:

5. Format of the Response

For **each segment** in the incoming text:

 1. Show the segment excerpt or a short summary.

 2. **Memory Tags**: list any relevant categories.

 3. **Dimension**: choose intellectual, emotional, or physical.

 4. **Sentiment Score**: 0.0 → 1.0.

 5. **Brief Explanation**: why these tags/dimensions.

To make sure the model understands what we are asking for, we provide an example format:

Example format:

Segment 1: "Excerpt..."

 - Memory Tags: [Time Memory Past, Reality Memory]

 - Dimension: Emotional

 - Sentiment Score: 0.7

 - Explanation: The speaker refers to a past real event with positive
affect.

If we were writing a traditional generative AI model message, we could stop here. However, this

is a complex message, so we need to add instructions to insist on what we expect.

6. Additional instructions
We avoided overloading the previous sections of the message. If we try to squeeze too many

instructions in, the model might get confused. Let’s remind the system that we always want

a segment-by-segment analysis. We insist that if the model doesn’t find a category, we want a

“memoryless” tag and not a hallucination. Additionally, we only want short and clear explanations:

6. Additional Instructions

 - Always analyze segment-by-segment.

 - If no memory category applies, use "memoryless."

 - Use a short but clear explanation.

Chapter 6 207

Now comes the tricky part. We told the model that if it didn’t find a category at all, to use a “mem-

oryless” tag. However, if the model has an idea but is not 100% sure, then it is allowed to pick the

most probable memory tag along with a mandatory sentiment score:

 - If uncertain about the correct memory category, pick the most likely.

 - Always include a sentiment score.

At this point, we have provided the model with numerous instructions. Let’s make sure it re-

members its primary task.

7. Primary task recall
After all the instructions we have given the model, we will remind the model that its primary

task is a memory tag analysis of text segments. We also expect the format of the output to be

structured as defined:

7. Primary Task

When I provide multisegment text, you must do a thorough memory-tag
analysis for each segment. Return the results in the structured format
above.

[End of System Prompt]

Note that we added [End of System Prompt] to make sure that the model understands that the

message part of the global prompt is now completely defined. We use the term prompt to make

sure that it understands it as a set of instructions, not just a general message.

We are now ready to run the memory analysis.

Running the memory analysis
The complex system message we designed is stored in a variable named system_message_s1 in

cot_message_c6.py in the commons directory of the GitHub repository. The goal is to keep this

message and those for other steps separate from the function calls so that the AI agent of the

GenAISys can repurpose the function in this step or other steps for different tasks.

We first download the file that contains the messages:

download("commons","cot_messages_c6.py")

Reasoning E-Marketing AI Agents208

Then we import the system_message_s1 message and the messages we will need for Step 4, which

we will discuss later:

from cot_messages_c6 import (

 system_message_s1, generation,imcontent4,imcontent4b)

print(system_message_s1) # Print to verify

The print function is uncommented and will display the message we just created. It can be

commented and used at any time to verify whether the message is correctly imported. We now

prepare the messages for o3:

Step 1 : Memory and sentiment analysis

mrole= system_message_s1

user_text=review

•	 mrole is system_message_s1, the system message we designed

•	 user_text is review, the review selected from the hotel reviews dataset

We now call o3 and store the result in a variable:

retres=reason.make_openai_reasoning_call(user_text, mrole)

make_openai_reasoning_call is located in reason, the AI library of the GenAISys. It takes the two

arguments we just defined, creates an OpenAI client, makes the request, and returns the response:

Implemented in Chapter06

def make_openai_reasoning_call(user_text, mrole):

 system_prompt=mrole

 client = OpenAI()

 rmodel = "o3-mini" # o1 or other models. model defined in this file
in /commons to make a global change to all the notebooks in the repo when
there is an OpenAI update

 response = client.chat.completions.create(

 model=rmodel,

 messages=[

 {"role": "system", "content": system_prompt},

 {"role": "user", "content": user_text}

],

)

 return response.choices[0].message.content

Chapter 6 209

For this call, we chose the o3-mini version of the o3 reasoning model series. Other versions and

reasoning models can be chosen. The program displays the output received in retres:

Print the generated output (memory analysis)

print(retres)

The output shows the depth of the system message and the o3 reasoning model. The AI model

has broken the content down into segments and decoded the memory tags subconsciously used

by the human reviewer, as shown in the first segment.

The model first provides the segment number and the content of that segment. Let’s focus on

segment 7, which requires our attention:

Segment 7: "But we didn't get the view expected."

It also provides the memory tags that encoded this segment:

- Memory Tags: [Episodic Memory, Reality Memory]

It continues by providing the dimension, which is as follows:

• Dimension: Emotional

It then gives a sentiment score, which is as follows:

• Sentiment Score: 0.4

Finally, it produces an explanation that sums up its analysis:

 - Explanation: The disappointment regarding the view introduces a
negative emotional element to this real-life account, impacting the
overall perception of the stay.

The model then continues its analysis for all the segments of the review. We have now performed

a complex memory analysis that sets the stage for the subsequent steps. Let’s proceed to extract

the sentiment scores.

Step 2: Extract sentiment scores
From this point on, the original input stored in review is not used again. The CoT process relies

on the output of the previous step, which will continually vary depending on the context. The

next step involves extracting the sentiment scores for all segments produced in Step 1: Memory

and sentiment analysis. We will need this information to make decisions for Step 4: Content creation.

Reasoning E-Marketing AI Agents210

To extract the scores, we first create an extraction function and provide detailed instructions:

def extract(tasks_response):

 umessage = """

 1) Read the following text analysis that returns detailed memory tags
for each part of the text

 2) Then return the list of memory tags with absolutely no other text

 3) Use no formatting, no hashtags, no markdown. Just answer in plain
text

 4) Also provide the sentiment analysis score for each tag in this
format(no brackets) : memory tag sentiment Score

 """

We have clearly instructed our GenAISys to provide the sentiment scores in a clean format only. We

will now call GPT-4o with reason.make_openai_api_call, defined previously, and add reason.py,

the AI library we began building in the previous chapters. The input to the API call is the output

of the last step, retres, appended to the instruction message, umessage:

 umessage+=retres

The system role reminds the agent of its psychological marketing function:

 mrole = "system"

 mcontent = "You are a marketing expert specialized in the
psychological analysis of content"

The user role introduces the user message, umessage, and the API call is made:

 user_role = "user"

 task_response = reason.make_openai_api_call(

 umessage,mrole,mcontent,user_role

)

 return task_response

The agent returns task_response, from which we will extract the memory sentiment scores,

process, and verify:

Step 2: Extract scores

task_response=extract(retres)

print(task_response)

Chapter 6 211

The output is the list of scores per segment we expected for each memory tag:

Reality Memory sentiment 0.8

Episodic Memory sentiment 0.8

Reality Memory sentiment 0.4

Episodic Memory sentiment 0.4

Episodic Memory sentiment 0.8

Reality Memory sentiment 0.8

Time Memory Past sentiment 0.8

Episodic Memory sentiment 0.5…

We now need to consolidate these scores to use them for decision-making.

Step 3: Statistics
We will use a simple non-AI regular expressions (re) module for this function for pattern match-

ing and extraction. This shows that a GenAISys CoT can contain non-AI functions that expand

its scope beyond generative AI models.

The text to analyze is the output of the previous step:

Input text

text=task_response

We are looking for decimals:

Regular expression to extract sentiment scores

pattern = r"(\d+\.\d+)"

scores = [float(match) for match in re.findall(pattern, text)]

We then display the scores:

Output the extracted scores

print("Extracted sentiment scores:", scores)

The output contains the scores:

Extracted sentiment scores: [0.8, 0.8, 0.4, 0.4, 0.8, 0.8, 0.8, 0.5, 0.5,
0.5, 0.7,…

Reasoning E-Marketing AI Agents212

We first calculate an overall score if the function returned scores:

Optional: calculate the overall score and scaled rating

if scores:

 overall_score = sum(scores) / len(scores)

Then we scale the score from 1 to 5:

scaled_rating = overall_score * 5

Finally, we display the overall score and the scaled score:

print("Overall score (0–1):", round(overall_score, 2))

print("Scaled rating (0–5):", round(scaled_rating, 2))

The output is what we expected:

Overall score (0–1): 0.63

Scaled rating (0–5): 3.14

The output requires some human analysis:

•	 In real-life projects, this process might not go so smoothly! Maybe the AI agent will not

produce what we expect at all; perhaps it will for one step but not for the scores. When

that occurs, we have to work on alternative steps. Building a GenAISys, as with any AI

system, is an iterative process.

•	 The original rating in the hotel dataset for this review was 3, and we obtained 3.14, which

is more refined. Online ratings are subjective and may not accurately reflect the content

of the review. An AI agent will provide a more nuanced rating through advanced analysis

processes similar to the one in this section. We could average the hotel review and ours.

However, our goal is to generate a tailored message for the consumer. In a real-life project,

we would reach out to consumers in marketing panels, utilizing the consumer memory

agent, and obtain real-time feedback.

For now, however, we have the information we need to determine the content to create.

Step 4: Content creation
Before deciding on the content to create, the agent reads the information messages. The first

message is umessage4:

from cot_messages_c6 import umessage4

Chapter 6 213

The message contains instructions on how to create a promotional campaign. We are keeping

the message in a variable so that the function can be called with different prompts depending

on the task.

The agent must first use the memory tags analyzed to generate, not analyze, a text:

umessage4 = """

1) Your task is to generate an engaging text for a customer based on a
memory analysis of a text

2) The analysis of the text is provided in the following format: text
segment, memory tags, dimension, sentiment score, and explanation

The text also contains the overall sentiment score and the list of memory
tags in the text

3) Use no other memory tags than those provided to generate your engaging
text

Then, the agent receives instructions on the sentiment analysis:

4) Use the overall sentiment score to give the tone of your response

If the overall sentiment score is positive write an engaging text
addressing each segment with its memory tag and sentiment score

If the overall sentiment score is negative analyze why and find ideas and
solutions to find a way to satisfy the customer

If the overall sentiment score is negative analyze make sure to show
empathy for this negative feeling and then make the transition from
negative to positive

4) Focus on the topic provided that begins with the term the topic which
focuses on the core topic of the text to make the customer happy

Then, the agent receives final instructions on the content to generate:

5) Use your training to suggest named entities for that topic to make
sure that the customer receives a message tailored to the memory tags and
sentiment score

We now create the input by adding the scaled rating we obtained and the memory tags the agent

found:

ugeneration=generation + "The advanced memory analysis of each segment of
a text with a sentiment score:" + retres + " the scaled overall rating:
"+ str(scaled_rating)+ " and the list of memory tags of the text "+ task_
response

Reasoning E-Marketing AI Agents214

The agent now has a complete representation of the task expected. We explain the agent’s role

with imcontent4:

imcontent4 = "You are a marketing expert specialized in the psychological
analysis of content"

The agent is now ready to run the generation with the make_openai_api_call call:

ugeneration=generation + …

mrole4 = "system"

mcontent4 = imcontent4

user_role = "user"

pre_creation_response = make_openai_api_call(

 ugeneration,mrole4,mcontent4,user_role

)

print(pre_creation_response)

The response is a pre_creation_response response that is empathetic if the sentiment is negative

or adapts it to the tone of the review otherwise:

Segment 7: "But we didn't get the view expected."

Memory Tags: [Episodic Memory, Reality Memory]

Sentiment Score: 0.4

It's understandable to feel a bit let down when expectations aren't met.
For future stays, …

The output is in a cognitive format. We’re going to run the same call but with a message to clean

up and prepare the content for image generation:

umessage4b="Clean and simplify the following text for use as a DALL-E
prompt. Focus on converting the detailed analysis into a concise visual
description suitable for generating an engaging promotional image" + pre_
creation_response

mrole4b = "system"

mcontent4b = imcontent4b

user_role4b = "user"

creation_response = make_openai_api_call(

 umessage4b,mrole4b,mcontent4b,user_role4b

)

print(creation_response)

Chapter 6 215

The output is a clear instruction to create an image with an exciting luxurious offer that is always

appreciated:

"Luxurious hotel stay with spacious rooms and swift check-in; enjoy a
comfortable bed and convenient 24-hour parking. Celebrate with special
deals and nearby shopping reminiscent of home. Despite minor noise and
view issues, the overall experience is positive and memorable."

The output of the message may vary each time we run the requests, but the tone should remain

the same. Also, we can adapt the instructions to other content to generate. In this case, the agent

is all set to use this instruction to create an image.

Step 5: Creating an image
At this stage, the consumer memory agent uses the instructions (creation_response) generated

during Step 4: Content creation to create a tailored promotional image using OpenAI’s DALL-E:

Step 5: Creating an image

import requests

prompt=creation_response

image_url = reason.generate_image(prompt)

The generate_image(prompt) function is reused from the previous chapter. By consistently re-

using functions, we reduce the development overhead and ensure code maintainability. As in

Chapter 5, the image is generated and stored in a file as c_image.png:

save_path = "c_image.png"

image_data = requests.get(image_url).content

with open(save_path, "wb") as file:

 file.write(image_data)

The image is now ready to accompany our final personalized message. We will display the image

at the end of the process.

Step 6: Creating a custom message
With the promotional image prepared, we now generate a concise and engaging customer message.

First, we confirm that creation_response from Step 5: Creating an image is available:

if creation_response != "":

 umessage = """

 1) Read the following text carefully

Reasoning E-Marketing AI Agents216

 2) Then sum it up in a paragraphs without numbering the lines

 3) They output should be a text to send to a customer

 """

The output from the agent provides a polished message, suitable for customer communication:

Dear Customer,

Experience a luxurious hotel stay with spacious rooms and a swift check-in
process. Enjoy a comfortable bed and the convenience of 24-hour parking.
Take advantage of special deals and nearby shopping that feels like home.
While there may be minor noise and view issues, the overall experience
remains positive and memorable.

Best regards,

We can now display the output in another format if we wish to, with Python’s textwrap:

import os

from IPython.display import Image, display

import textwrap

Set the desired width for each line

line_width = 70

Wrap the text to the specified width

wrapped_message = textwrap.fill(process_response, width=line_width)

print(wrapped_message)

The displayed message is clear, professional, and suitable for direct customer outreach:

Dear Customer, Experience a luxurious hotel stay with spacious rooms

and a swift check-in process. …

To enhance this message, you might adjust the prompt to omit references to AI or any internal

system details, focusing purely on customer-oriented language.

Finally, the system displays the generated image alongside the message to create an appealing,

personalized promotional package:

Define the image path

image_path = "/content/c_image.png"

Check if the image file exists

if os.path.exists(image_path):

Chapter 6 217

 # Display the image

 display(Image(filename=image_path))

else:

 print(f"Image file {image_path} not found.")

The resulting visual emphasizes the hotel’s upgraded, luxurious offering, perfectly aligned with

the customer’s expectations based on their review analysis:

Figure 6.6: An upgrade for a stay in the hotel for a customer

You can now experiment with additional reviews, testing the depth and flexibility of the agent.

We have successfully developed a sophisticated, neuroscience-inspired CoT consumer memory

agent. In the next section, we’ll integrate this full process into the reason.py AI library and further

enhance our GenAISys framework.

GenAISys interface: From complexity to simplicity
Our journey in this chapter has taken us deeper into the era of self-reflecting, reasoning, and

meta-cognitive agentic AI. In this final section, we shift from the intricate inner workings of our

consumer-memory CoT to a clean, intuitive user experience. We’ll add a CoT widget that lets any

user trigger memory analysis or full content generation on arbitrary text. We’ll then extend the

AI agent so it reacts to that widget’s options. Finally, we’ll demonstrate the generalized workflow

on a flight review to show how the same memory logic applies to new domains.

Reasoning E-Marketing AI Agents218

Open the 2_Running_the_Reasoning_GenAISys.ipynb notebook on GitHub. Then run the Set-

ting up the Environment section, which is identical to the notebook in Chapter 5. We will begin by

adding a CoT widget to the IPython interface.

Adding the CoT widget
To make the memory agent simple and intuitive, we introduce a straightforward drop-down

menu (Figure 6.6). Users can effortlessly select the task they wish the GenAISys agent to perform:

•	 None (default): No reasoning task is activated

•	 Analysis: Activates a standalone memory-analysis function

•	 Generation: Executes the full consumer memory agent workflow (Steps 1–6), including

sentiment analysis, content generation, and custom message creation

This streamlined user interaction significantly reduces complexity for the end user, shifting the

sophisticated internal operations into the background.

Figure 6.7: Choosing the reasoning task

The widget is implemented in three steps—adding the widget, adding an observer, and sending

the options to the AI agent:

1.	 Adding the widget is done in a few lines. We define the drop-down menu (instruct_

selector) within the IPython interface:

Ensure 'Instructions' exists in the memory_selector options

instruct_selector = Dropdown(

 options=["None","Analysis", "Generation"],

Chapter 6 219

 value="None", # Ensure default active_memory is in the options

 description='Reasoning:',

 layout=Layout(width='50%')

)

The dropdown provides clear options, ensuring users easily understand their choices:

None, Analysis, or Generation. Next, we incorporate instruct_selector into the existing

interface layout (VBox):

VBox:

Box(

 [user_selector, input_box, agent_checkbox,

 tts_checkbox, files_checkbox,instruct_selector],

 layout=Layout(display='flex', flex_flow='column',

 align_items='flex-start', width='100%')

When the user submits their choice, a handler updates the output messages for the user

to see that the choice has been taken into account using standard submission code:

def handle_submit(sender):

 user_message = sender.value

 if user_message.strip():

 sender.value = "" # Clear the input box

 # Check if instruct_selector is "Analysis" or "Generation"

 if instruct_selector.value in ["Analysis", "Generation"]:

 with reasoning_output:

 reasoning_output.clear_output(wait=True)

 print("Thinking...") # Display "Thinking..." only
when

 print("Reasoning activated") # Restore default message…

We want “Thinking…” to be displayed to signal to the user that the system is working.

2.	 The second step is to insert an observer that will detect a change the user makes and

update the display. The instruct_selector is called by instruct_selector.observe:

Ensure 'Instructions' exists in the memory_selector options

instruct_selector = Dropdown(

 options=["None","Analysis", "Generation"],

Reasoning E-Marketing AI Agents220

 value="None", # Ensure default active_memory is in the options

 description='Reasoning:',

 layout=Layout(width='50%')

instruct_selector.observe(on_instruct_change, names='value')

3.	 Finally, we forward the user’s selection seamlessly into the AI agent call. The chosen rea-

soning mode (active_instruct) is integrated into the agent’s execution path:

if agent_checkbox.value:

 pfiles = 1 if files_checkbox.value else 0

 active_instruct = instruct_selector.value # Retrieve the
selected instruction

 response = chat_with_gpt(user_histories[active_user],

 user_message, pfiles, active_instruct)

By clearly integrating these few lines, the AI agent dynamically activates the appropriate reasoning

mode without additional user complexity. We can now enhance the AI agent.

Enhancing the AI agent
The AI agent will now receive the user’s widget selection in a new argument named active_

instruct that will trigger its decisions:

def chat_with_gpt(messages, user_message,files_status,active_instruct):

When the user selects Analysis, the AI agent triggers the previously built reasoning function,

make_openai_reasoning_call, to perform memory analysis:

if active_instruct=="Analysis" and continue_functions==True:

 from cot_messages_c6 import (

 system_message_s1, generation,imcontent4,imcontent4b)

 mrole= system_message_s1

 reasoning_steps=reason.make_openai_reasoning_call(

 user_message, mrole

)

 aug_output=reasoning_steps

 continue_functions=False

Chapter 6 221

Similarly, when Generation is selected, the agent runs the complete memory agent workflow

using the custom memory_reasoning_thread function:

if active_instruct=="Generation" and continue_functions==True:

 from cot_messages_c6 import (

 system_message_s1, generation,imcontent4,imcontent4b)

 reasoning_steps = reason.memory_reasoning_thread(

 user_message,system_message_s1,

 generation,imcontent4,imcontent4b

)

 aug_output=reasoning_steps

 continue_functions=False

With these straightforward integrations, the GenAISys interface now provides powerful reasoning

capabilities transparently.

Generalizing the GenAISys capabilities
With the enhanced interface, users can easily apply memory agent reasoning to diverse content

beyond hotel reviews. Let’s illustrate this flexibility with a general user comment regarding a flight.

The user simply selects Analysis, then submits a flight review without additional instructions:

User01: The flight from Tokyo to Honolulu was nice in general but the food
was awful!

The GenAISys instantly returns a detailed, segment-by-segment memory analysis:

Agent: Segment 1: "The flight from Tokyo to Honolulu was nice in general"

- Memory Tags: [Reality Memory, Time Memory Past]

- Dimension: Emotional

- Sentiment Score: 0.7

- Explanation: This segment recounts a real past experience (a flight) and
expresses a positive emotional evaluation ("nice"). The reference to a
completed event classifies it under reality and past time memory…

The user then reenters the sentence, but this time with the Generation option and the Files option

checked, so that the image generated with the text will be displayed. All the user has to do is select

the option, enter the text, and submit it. Once again, the experience is seamless, no additional

instructions are required on the part of the user, and the response is complete: the fully analysis,

process, and final customer message as we designed in the previous section—beginning with

memory analysis, proceeding to sentiment scoring, content generation, and concluding with a

Reasoning E-Marketing AI Agents222

tailored customer message and an engaging image (see Figure 6.8) that will be displayed if Files

is checked in the interface:

Process: Performing memory and sentiment analysis.

Memory analysis result: Segment 1: "The flight from Tokyo to Honolulu was
nice in general but the food was awful!"

- Memory Tags: [Reality Memory, Episodic Memory, Time Memory Past]

- Dimension: Emotional

- Sentiment Score: 0.4

- Explanation: This segment recounts a specific past travel event (a
flight between two cities), embedding personal experience and subjective
evaluation (positive about the flight overall and strongly negative about
the food). The use of experiential details and judgment indicates that the
experience is encoded as a real, episodic, past memory with an emotional
emphasis, resulting in an overall slightly negative sentiment.

…

Dear Customer,

Experience a serene flight from Tokyo to Honolulu while enjoying a gourmet
meal inspired by the renowned Chef Nobu Matsuhisa. Indulge in diverse and
vibrant dishes crafted to enhance your journey.

Best regards,

Figure 6.8: An engaging customer image to match the personalized message

Chapter 6 223

We can see that from a user perspective, our GenAISys is running seamlessly. We are giving the

user the illusion that everything in generative AI is simple. Of course, in a real-life project, we

would have to spend resources trying all types of texts, finding the limitations, and solving the

issues to cover edge cases and refine outputs. Let’s now sum up our journey in this chapter and

take the GenAISys to yet another level.

Summary
This chapter pushed our GenAISys far beyond classical AI, into the realm of meta-cognitive,

self-reflective reasoning. We defined a pragmatic memory model combining primary categories

(short-term, long-term, reality, fiction, and time) with semantic and episodic tags, then layered

intellectual, emotional, and physical dimensions on top. Using this framework, we built a six-step

CoT agent that decodes each review segment, tags memory categories, quantifies sentiment, and

produces an overall cognitive score. Based on the cognitive profile and sentiment score, the agent

generated personalized promotional text and created a matching DALL-E image—then wrapped

everything into a polished customer message.

A new drop-down widget now lets users choose None, Analysis, or Generation, making so-

phisticated reasoning tasks a single-click experience. Behind the scenes, the AI agent routes

requests to either a standalone memory analysis or the full consumer-memory workflow. We

finally demonstrated the agent on a flight review, showing it can analyze, score, and respond to

any text—extending GenAISys from hospitality into broader customer service scenarios.

With these advances, the GenAISys is ready for real-time, production-grade decision-making. The

next chapter will focus on scaling the functionality of our GenAISys architecture for immediate,

high-throughput AI operations.

Questions
1.	 Emotional memory is a key factor in e-marketing. (True or False)

2.	 OpenAI’s o3 is a reasoning model that can perform complex tasks. (True or False)

3.	 Long-term memory does not include emotional factors. (True or False)

4.	 A generative AI model cannot analyze complex memory structures. (True or False)

5.	 A generative AI model can not only analyze sentiments but also provide numerical scores

between 0 and 1. (True or False)

6.	 A Pinecone index can produce complex instructions based on system queries. (True or

False)

Reasoning E-Marketing AI Agents224

7.	 A thread-of-reasoning agent can think through complex prompts and perform multiple

coordinated tasks. (True or False)

8.	 A thread-of-reasoning scenario can be triggered with a user input. (True or False)

9.	 A reasoning agent can process reviews from sites such as TripAdvisor and generate custom

messages. (True or False)

10.	 A generative AI system cannot process thread-of-reasoning agents. (True or False)

References
•	 Brandt, Denise, and Ilja Nieuwenhuis. 2017. Understanding Memory in Advertising. Niel-

sen. February. https://www.nielsen.com/insights/2017/understanding-memory-in-
advertising/

•	 Nielsen Homepage: https://www.nielsen.com/

•	 Nicks, Guillaume, and Yannick Carriou. 2016. Emotion, Attention and Memory in Advertis-

ing. Ipsos Knowledge Centre. https://www.ipsos.com/sites/default/files/2017-07/
Emotion-Attention-and-Memory-in-Ads.pdf

•	 Ipsos Homepage: https://www.ipsos.com/

•	 OpenAI. 2024. OpenAI o3 System Card: A Comprehensive Evaluation of the o3 Model

Series, Outlining Advancements in Safety, Reasoning, and Robustness. OpenAI. https://
openai.com/index/o3-mini-system-card/

Further reading
•	 Woodside, Arch G., Sanjay Sood, and Kimberly E. Miller. 2008. “When Consumers and

Brands Talk: Storytelling Theory and Research in Psychology and Marketing.” Psychology

& Marketing 25 (2): 97–145. https://www.researchgate.net/publication/229889043_
When_consumers_and_brands_talk_Storytelling_theory_and_research_in_
psychology_and_marketing

https://www.nielsen.com/insights/2017/understanding-memory-in-advertising/
https://www.nielsen.com/insights/2017/understanding-memory-in-advertising/
https://www.nielsen.com/insights/2017/understanding-memory-in-advertising/

https://www.nielsen.com/
https://www.ipsos.com/sites/default/files/2017-07/Emotion-Attention-and-Memory-in-Ads.pdf
https://www.ipsos.com/sites/default/files/2017-07/Emotion-Attention-and-Memory-in-Ads.pdf
https://www.ipsos.com/
https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/
https://www.researchgate.net/publication/229889043_When_consumers_and_brands_talk_Storytelling_theory_and_research_in_psychology_and_marketing
https://www.researchgate.net/publication/229889043_When_consumers_and_brands_talk_Storytelling_theory_and_research_in_psychology_and_marketing
https://www.researchgate.net/publication/229889043_When_consumers_and_brands_talk_Storytelling_theory_and_research_in_psychology_and_marketing

Chapter 6 225

Subscribe for a Free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/TRO5B or scan the QR code below.

https://packt.link/TRO5B

7
Enhancing the GenAISys with
DeepSeek

The DeepSeek-V3 Technical Report arrived in December 2024, followed a month later by the Deep-

Seek-R1 paper and a full set of open source resources. The release sent a shockwave through the

AI community: download counts on Hugging Face exploded, DeepSeek apps topped store charts,

and new API providers sprang up overnight. Governments debated moratoriums while the major

generative AI players—OpenAI, X (with Grok 3), and others—stepped on the gas. Within weeks,

we saw o3 versions improve OpenAI models, a clear signal that the AI race had entered a new

phase. At the same time, real-world AI production teams watched these dizzying innovations

pile up, disrupting existing AI systems. Teams that spent months adapting their systems to one

generative AI model found themselves caught in a gray area between systems that work but

could still be improved.

So, what should we do? Should we upgrade a stable GenAISys to follow the latest trend in an ac-

celerating AI market with the cost and risks entailed? Or should we ignore the latest models if our

system is stable? If we ignore evolutions, our system may become obsolete. If we keep following

the trends, our system will become unstable!

This chapter shows how to strike a workable balance. Instead of rewriting entire environments

for every model upgrade or new functionality, we introduce a handler-selection mechanism that

routes user requests to the right tool at the right time. A handler registry stores every AI function

we develop; the selection layer inspects each incoming message and triggers the appropriate

handler. With this design, the GenAISys can evolve indefinitely without destabilizing the stack.

We will begin the chapter by defining how a balanced approach can be found between model

Enhancing the GenAISys with DeepSeek228

evolutions and real-world usage, illustrated through a product design and production use case.

Next comes a concise look at DeepSeek-V3, DeepSeek-R1, and the distilled Llama model we’ll

implement. Then, we’ll install DeepSeek-R1-Distill-Llama-8B locally with Hugging Face, wrap

it in a reusable function, and then plug it into our GenAISys. At that point, we will develop the

flexible, scalable environment of the handler-selection mechanism to allow us to activate the

models and tasks we need for each project. By the end of the chapter, you will be able to have full

control over the GenAISys and be ready for whatever the AI market throws at you.

This chapter covers the following topics:

•	 The balance between AI acceleration and usage

•	 An overview of DeepSeek-V3, R1, and distillation models

•	 Installing DeepSeek-R1-Distill-Llama-8B locally

•	 Creating a function to run DeepSeek-R1-Distill-Llama-8B

•	 Deploying DeepSeek-R1-Distill-Llama-8B in the GenAISys

•	 Building a handler registry for all the AI functions

•	 Building a handler-selection mechanism to select the handlers

•	 Upgrading the AI functions to be handler-compatible

•	 Running product design and production examples

Let’s start by defining the balance between relentless AI evolution and day-to-day business usage.

Balancing model evolution with project needs
Before racing to adopt every new model, we must anchor our decisions on project needs. So far,

our GenAISys has served mostly marketing functions for an online travel agency. Now, imagine

that the agency has grown large enough to fund a line of branded merchandise—custom travel

bags, booklets, and other goodies. To manage this new venture, the company hires a product

designer and production manager (PDPM). The PDPM studies customer feedback and designs

personalized kits but quickly sees that AI could boost both creativity and throughput.

Chapter 7 229

The examples in this chapter thus focus on product design and production workflows. Our goal

is not to force DeepSeek (or any other model) into every task but to choose the model that best

fits the need. To do that, we’ll extend the GenAISys with a handler-selection mechanism that

responds to user choices in the IPython interface and to keywords in each message. Depend-

ing on the situation, the operations team can configure the system to route requests to GPT-4o,

DeepSeek, or any future model.

Before wiring DeepSeek into our GenAISys, let’s review the DeepSeek model family.

DeepSeek-V3, DeepSeek-V1, and R1-Distill-Llama:
Overview
DeepSeek’s journey began with DeepSeek-V3, advanced to DeepSeek-R1—a reasoning-focused

upgrade—and then branched into distilled variants built on Qwen and Llama architectures, as

shown in Figure 7.1. V3 was responsible for putting the model on the map, and it was R1 that

brought in robust reasoning.

Figure 7.1: DeepSeek development cycle

According to DeepSeek-AI et al. (2024), V3 delivered striking efficiency gains. Its full training

budget was only 2.788 million H800 GPU-hours (≈ USD 5.6 million at USD 2 per GPU-hour)—

remarkably low for a modern frontier model. Even on a per-token basis, the cost is lean, needing

just 180 K GPU-hours per trillion tokens. The cost is, therefore, very economical compared to

what is typically reported for large-scale models.

Enhancing the GenAISys with DeepSeek230

When we examine the list of authors of the DeepSeek-V3 Technical Report (2024) on arXiv,

https://arxiv.org/abs/2412.19437, we first notice that more than 150 specialists wrote the

paper! In itself, this factor alone proves the efficiency of open source approaches that involve

collective efforts to produce efficiency-driven architectures by opening ideas to every person

willing to contribute. The list of Contributions and Acknowledgements in Appendix A is a tribute to

open source developments.

Figure 7.2: DeepSeek-R1 is derived from DeepSeek-V3

DeepSeek-R1 grew straight out of DeepSeek-V3. The team wanted V3’s punch, but with feath-

er-weight inference, so they wired the model to activate only a minimal subset of experts during

inference, as shown in Figure 7.2. Furthermore, training stayed just as lean. R1 jumped directly

into reinforcement learning with no supervised fine-tuning. The reasoning was high but faced

limitations for classic NLP tasks. Rule-based rewards were introduced to avoid the neural net-

work’s training cycles. The training prompts were structured with neat <think> … <answer>

tags, avoiding the smuggling of biases into the model’s final answer. Moreover, the reinforcement

learning process began with cold-start data containing chain of thought (CoT) examples focusing

on reasoning. This approach reduced training time and costs.

DeepSeek evolved to R1 by refining MoE strategies and integrating multi-token prediction, sig-

nificantly enhancing both accuracy and efficiency. Finally, DeepSeek-R1 was used to enhance

DeepSeek-V3 with reasoning features. DeepSeek-R1 was also distilled into smaller models such

as Llama and Qwen. The technique used was knowledge distillation, where a smaller “student”

model (in this chapter, Llama) learns from a “teacher” model (in this chapter, DeepSeek-R1). This

approach is effective in that it teaches the student model to achieve performance similar to that

of the teacher while being more efficient and suitable for deployment on resource-constrained

devices, which will be the case in this chapter, as you’ll see.

Let’s install and run DeepSeek-R1-Distill-Llama-8B and plug it into our GenAISys.

https://arxiv.org/abs/2412.19437

Chapter 7 231

Getting started with DeepSeek-R1-Distill-Llama-8B
In this section, we will implement DeepSeek-RAI-Distill-Llama-8B, a distilled version of Deep-

Seek-R1, as shown in Figure 7.3. We will install Hugging Face’s open-source Transformers library,

an open framework for using and fine-tuning pre-trained transformer models.

Figure 7.3: Installing DeepSeek-RAI-Distill-Llama-8B, a distilled version of DeepSeek-R1

The version we will download is an open source distilled version of DeepSeek-R1 provided by

Unsloth, an LLM accelerator, on Hugging Face: https://unsloth.ai/. We will thus not use a

DeepSeek API but only a locally installed open source version that does not interact with the web,

leveraging Hugging Face’s SOC 2 Type 2 certification that complies with privacy and security

constraints: https://huggingface.co/docs/inference-endpoints/en/security.

To install deepseek-ai/DeepSeek-R1-Distill-Llama-8B locally on a recent machine, it is recom-

mended to have about 20 GB of RAM. A bit less is possible, but it is best to avoid the risk. About

20 GB of disk space is also recommended.

To install DeepSeek-R1-Distill-Llama-8B on Google Colab, it is recommended to use Google Colab

Pro to obtain GPU memory and power. For this section, the Hugging Face model is downloaded

on Google Drive, which is mounted through Google Colab. The disk space required will exceed

the free version of Google Drive, and a minimal subscription to Google Drive may be required.

Check the costs before installing on Google Colab.

We will be using the DeepSeek-RAI-Distill-Llama-8B documented by Hugging Face:

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B. Hug-

ging Face also provides recommendations for this model: https://huggingface.

co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B#usage-recommendations.

https://unsloth.ai/
https://huggingface.co/docs/inference-endpoints/en/security
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B#usage-recommendations
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B#usage-recommendations

Enhancing the GenAISys with DeepSeek232

Open Getting_started_with_DeepSeek_R1_Distill_Llama_8B.ipynb within the Chapter07

directory on GitHub (https://github.com/Denis2054/Building-Business-Ready-Generative-

AI-Systems/tree/main). We will follow the standard procedure of the Hugging Face framework:

•	 Run the notebook once to install DeepSeek-R1-Distill-Llama-8B locally:

install_deepseek=True

•	 Run the notebook with no installation and interact with the model:

install_deepseek=False

With the model in place, we can wrap it in a handler and plug it into our GenAISys in the next

section.

Setting up the DeepSeek Hugging Face environment
We’ll begin by installing DeepSeek-R1-Distill-Llama-8B (locally or in Colab) and then run a quick

inference to confirm everything works.

We will first install DeepSeek in the first session:

Set install_deepseek to True to download and install R1-Distill-Llama-8B
locally

Set install_deepseek to False to run an R1 session

install_deepseek=True

The GPU needs to be activated, so let’s check it:

Checking GPU activation

!nvidia-smi

If we are installing Google Colab, we can mount Google Drive:

from google.colab import drive

drive.mount('/content/drive')

We now set the cache directory in Google Drive and set the corresponding environment variables:

import os

Define the cache directory in your Google Drive

cache_dir = '/content/drive/MyDrive/genaisys/HuggingFaceCache'

Set environment variables to direct Hugging Face to use this cache
directory

os.environ['TRANSFORMERS_CACHE'] = cache_dir

#os.environ['HF_DATASETS_CACHE'] = os.path.join(cache_dir, 'datasets')

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main

Chapter 7 233

We can now install the Hugging Face Transformers library:

!pip install transformers==4.48.3

With that, we are ready to download the model.

Downloading DeepSeek
Let’s now download the model from unsloth/DeepSeek-R1-Distill-Llama-8B within the Hug-

ging Face framework with the tokenizer and the model:

from transformers import AutoTokenizer, AutoModelForCausalLM

import time

if install_deepseek==True:

 # Record the start time

 start_time = time.time()

 model_name = 'unsloth/DeepSeek-R1-Distill-Llama-8B'

 # Load the tokenizer and model

 tokenizer = AutoTokenizer.from_pretrained(model_name)

 model = AutoModelForCausalLM.from_pretrained(

 model_name, device_map='auto', torch_dtype='auto'

)

 # Record the end time

 end_time = time.time()

 # Calculate the elapsed time

 elapsed_time = end_time - start_time

 print(f"Time taken to load the model: {elapsed_time:.2f} seconds")

The download time will be displayed and also depends on your internet connection and Hugging

Face’s download speed. Once installed, verify that everything is installed in your local directory.

In this case, it is as follows:

if install_deepseek==True:

 !ls -R /content/drive/MyDrive/genaisys/HuggingFaceCache

The output should show the files downloaded:

/content/drive/MyDrive/genaisys/HuggingFaceCache:

models--unsloth--DeepSeek-R1-Distill-Llama-8B version.txt

/content/drive/MyDrive/genaisys/HuggingFaceCache/models--unsloth--
DeepSeek-R1-Distill-Llama-8B:

Enhancing the GenAISys with DeepSeek234

blobs refs snapshots

/content/drive/MyDrive/genaisys/HuggingFaceCache/models--unsloth--
DeepSeek-R1-Distill-Llama-8B/blobs:

03910325923893259d090bfa92baa4088cd46573…

Now, let’s run a DeepSeek session.

Running a DeepSeek-R1-Distill-Llama-8B session
To make sure the model is correctly installed and also to avoid overwriting the installation when

starting a new session, go back to the top of the notebook and set the following:

install_deepseek=False

We will now load the DeepSeek-R1-Distill-Llama-8B tokenizer and model locally:

import time

from transformers import AutoTokenizer, AutoModelForCausalLM

if install_deepseek==False:

 # Define the path to the model directory

 model_path = '/content/drive/MyDrive/genaisys/
HuggingFaceCache/models--unsloth--DeepSeek-R1-Distill-Llama-8B/
snapshots/71f34f954141d22ccdad72a2e3927dddf702c9de'

 # Record the start time

 start_time = time.time()

 # Load the tokenizer and model from the specified path

 tokenizer = AutoTokenizer.from_pretrained(

 model_path, local_files_only=True

)

 model = AutoModelForCausalLM.from_pretrained(

 model_path, device_map='auto', torch_dtype='auto',

 local_files_only=True

)

 # Record the end time

 end_time = time.time()

 # Calculate the elapsed time

 elapsed_time = end_time - start_time

 print(f"Time taken to load the model: {elapsed_time:.2f} seconds")

Chapter 7 235

The time it took to load the model is displayed and will depend on the configuration of your

machine:

Time taken to load the model: 14.71 seconds

We can have a look at the configuration of the Llama model:

if install_deepseek==False:

 print(model.config)

The output shows interesting information. The LlamaConfig readout confirms we are running

a compact, well-scoped model:

LlamaConfig {

 "_attn_implementation_autoset": true,

 "_name_or_path": "/content/drive/MyDrive/genaisys/
HuggingFaceCache/models--unsloth--DeepSeek-R1-Distill-Llama-8B/
snapshots/71f34f954141d22ccdad72a2e3927dddf702c9de",

 "architectures": [

 "LlamaForCausalLM"

],

 …

The distilled Llama model has 32 transformer layers and 32 attention heads per layer, totaling 1,024

attention heads. Also, it contains 8 billion parameters. By contrast, its teacher model, DeepSeek-R1,

is an MoE giant with 61 layers and a massive 671 billion parameters, of which about 37 billion

are active on each forward pass. Let’s now run an example with a prompt for a production issue:

if install_deepseek==False:

 prompt="""

 Explain how a product designer could transform customer requirements
for a traveling bag into a production plan.

 """

We first insert time measurement and tokenize the input using the GPU:

import time

if install_deepseek==False:

 # Record the start time

 start_time = time.time()

 # Tokenize the input

 inputs = tokenizer(prompt, return_tensors='pt').to('cuda')

Enhancing the GenAISys with DeepSeek236

Then, we run the generation:

 # Generate output with enhanced anti-repetition settings

 outputs = model.generate(

 **inputs,

 max_new_tokens=1200,

 repetition_penalty=1.5, # Increase penalty to 1.5 or higher

 no_repeat_ngram_size=3, # Prevent repeating n-grams of size 3

 temperature=0.6, # Reduce randomness slightly

 top_p=0.9, # Nucleus sampling for diversity

 top_k=50 # Limits token selection to top-k probable tokens

)

The goal of our parameters is to limit the repetitions and remain focused:

•	 max_new_tokens=1200: To limit the number of output tokens

•	 repetition_penalty=1.5: To limit the repetitions (can be higher)

•	 no_repeat_ngram_size=3: To prevent repeating n-grams of a particular size

•	 temperature=0.6: To reduce randomness and stay focused

•	 top_p=0.9: Allows nucleus sampling for diversity

•	 top_k=50: Limits token selection to top_k to make the next token choice

This set of tokens tends to limit repetitions while allowing diversity. We can now decode the

generated text with the tokenizer:

 # Decode and display the output

 generated_text = tokenizer.decode(

 outputs[0], skip_special_tokens=True

)

 # Record the end time

 end_time = time.time()

 # Calculate the elapsed time

 elapsed_time = end_time - start_time

 print(f"Time taken to load the model: {elapsed_time:.2f} seconds")

Chapter 7 237

The output shows the overall time it took the model to think and respond:

Time taken to load the model: 20.61 seconds

Let’s wrap generated_text and display it:

import textwrap

if install_deepseek==False:

 wrapped_text = textwrap.fill(generated_text, width=80)

print(wrapped_text)

The output provides ideas as requested. It displays DeepSeek-R1’s thinking abilities:

…Once goals & priorities become clearer, developing

prototypes becomes more focused since each iteration would aim at testing
one main feature rather than multiple changes simultaneously—which makes
refining individual elements easier before moving towards finalizing
designs, When prototyping starts: 1) Start with basic functional mockups
using simple tools –…

Integrating DeepSeek-R1-Distill-Llama-8B
In this section, we will add DeepSeek-R1-Distill-Llama-8B to our GenAISys in a few steps. Open

GenAISys_DeepSeek.ipynb. You can decide to run the notebook with DeepSeek in the first cell,

which will require a GPU:

DeepSeek activation deepseek=True to activate. 20 Go (estimate) GPU
memory and 30-40 Go Disk Space

deepseek=True

You can also decide not to run DeepSeek in this notebook, in which case, you will not need a GPU

and can change the runtime to CPU. If you decide on this option, OpenAI’s API will take over,

confirming that no GPU is required:

deepseek=False

Enhancing the GenAISys with DeepSeek238

Now, go to the Setting up the DeepSeek Hugging Face environment subsection of the notebook. We

will simply transfer the following cells from Getting_started_with_DeepSeek_R1_Distill_

Llama_8B.ipynb to this subsection. The following code will only be activated if deepseek=True:

•	 GPU activation check: !nvidia-smi

•	 Setting the local cache of the model: …os.environ['TRANSFORMERS_CACHE'] =cache_dir…

•	 Installing the Hugging Face library: !pip install transformers==4.48.3

•	 Loading the tokenizer and the model:

 from transformers import AutoTokenizer, AutoModelForCausalLM

 # Define the path to the model directory

 model_path = …

The installation is now complete. The calls to the DeepSeek model will be made in the AI Functions

section if DeepSeek==True with the parameters described in the Running a DeepSeek-R1-Distill-

Llama-8B session section:

 if models == "DeepSeek":

 # Tokenize the input

 inputs = tokenizer(sc_input, return_tensors='pt').to('cuda')

….

 task_response =tokenizer.decode(outputs[0],skip_special_tokens=True)

With DeepSeek functioning, we’re ready to build the handler selection mechanism, which will

route every user request to GPT-4o, DeepSeek, or any future model—without touching the rest

of the stack.

Implementing the handler selection mechanism as an
orchestrator of the GenAISys
The PDPM at the online travel agency is experiencing increased demands, requiring the agency

to design and produce large quantities of merchandise kits, including travel bags, booklets, and

pens. The PDPM wants to be directly involved in the GenAISys development to explore how it

can significantly boost productivity.

Given the growing complexity and variety of AI tasks in the system, the GenAISys development

team has decided to organize these tasks using handlers, as illustrated in Figure 7.4:

Chapter 7 239

Figure 7.4: GenAISys data flow and component interaction

We’ll, therefore, define, implement, and then invite the PDPM to run the enhanced GenAISys

to evaluate functions aimed at improving productivity in merchandise design and production.

Figure 7.4 describes the behavior of the handler pipeline we are going to implement:

1.	 The IPython interface serves as the entry and exit point for user interactions, capturing

user input, formatting it, and displaying responses returned by the handler mechanism.

2.	 The handler mechanism interprets user inputs, directing data among the IPython inter-

face, the handler registry, and the AI functions. It ensures tasks triggered by user messages

execute smoothly.

3.	 The handler registry maintains a list of all available handlers and their corresponding

functions. It supports system modularity and scalability by clarifying handler registration

and retrieval.

4.	 AI functions perform core tasks such as natural language understanding and data analysis,

executing instructions received from the handler mechanism, and returning outputs to

the IPython Interface.

In this setup, a user provides input through the IPython interface. This input is routed into a

handler selection mechanism, which then evaluates the available handlers registered alongside

specific conditions. Each entry in the registry is a (condition, handler) pair responsible for different

operations such as reasoning, image generation, or data analysis. Once a matching condition is

found, the corresponding AI function is activated. After processing, it returns the results to the

interface. This structured pipeline—from user input through to the AI-generated response—is

handled gracefully, with each handler clearly defined for readability and efficiency.

Enhancing the GenAISys with DeepSeek240

Before coding, let’s clearly define what we mean by a “handler” in the GenAISys.

What is a handler?
A handler is essentially a specialized function responsible for addressing specific tasks or types of

requests. Each handler is registered alongside a condition, typically a small function or lambda

expression. When evaluated as True, this condition indicates that the associated handler should

be invoked. This design neatly decouples the logic for deciding which handler should run from

how the handler executes its task.

In our context, handlers are the orchestrator’s building blocks—conditional functions designed

to process specific input types. When a user provides input, the handler selection mechanism

evaluates it against the handler registry, which consists of pairs of conditions and handlers. Upon

finding a match, the corresponding handler is triggered, invoking specialized functions such as

handle_generation, handle_analysis, or handle_pinecone_rag. These handlers execute so-

phisticated reasoning, data retrieval, or content generation tasks, providing precise and targeted

outputs.

But why exactly is a handler better for our GenAISys than a traditional list of if…then conditions?

Why is a handler better than a traditional if...then list?
Using handlers improves maintainability and readability. Instead of scattering multiple if...then

checks across the code, each handler is self-contained: it has its condition and a separate func-

tion that carries out the required action. This structure makes it easier to add, remove, or modify

handlers without risking unintended interactions in a chain of lengthy conditionals. Additionally,

since it separates the logic of “which handler do we need?” from “how does that handler actually

work?” we’re left with a more modular design that makes scaling seamless.

We will first go through the modifications to our IPython interface.

1. IPython interface
We’ll start by reviewing the primary updates to our IPython interface, which remains the main

interaction point, as shown in Figure 7.5. From a user perspective, the introduction of handlers

doesn’t alter the interface significantly, but some underlying code adjustments are necessary.

Chapter 7 241

Figure 7.5: The IPython interface processes the user input and displays the output

The IPython interface calls chat_with_gpt as before:

response = chat_with_gpt(

 user_histories[active_user], user_message, pfiles,

 active_instruct, models=selected_model

)

Now, however, we can explicitly select either an OpenAI or a DeepSeek model with the following:

models=selected_model

To add the model to the chat_with_gpt call, we first add a drop-down model selector to the

interface:

Dropdown for model selection

model_selector = Dropdown(

 options=["OpenAI", "DeepSeek"],

 value="OpenAI",

 description="Model:",

 layout=Layout(width="50%")

)

The model selector is added to the VBox instances in the interface:

Display interactive widgets

display(

 VBox(

 [user_selector, input_box, submit_button, agent_checkbox,

Enhancing the GenAISys with DeepSeek242

 tts_checkbox, files_checkbox, instruct_selector,

 model_selector],

 layout=Layout(display='flex', flex_flow='column',

 align_items='flex-start', width='100%')

)

)

The user can now choose their preferred model directly from the interface, as shown here:

Figure 7.6: Selecting a model

An additional feature has been added to manage file displays.

Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 7 243

File management
There are many ways to design file management. We will introduce a function here that can be

expanded during a project’s implementation phase as needed. Our file management code has

three functions:

•	 Manage user-triggered file deletion

•	 Delete c_image.png when the checkbox is unchecked

•	 Use existence checks to prevent errors during deletion

We will build the code to handle user interactions directly by observing changes in the checkbox

widget of our interface within the Jupyter Notebook environment. The code will then delete a

specific image file (c_image.png) when the user unchecks the checkbox named files_checkbox.

This ensures that files are removed cleanly when they are no longer needed, preventing clutter

and saving storage space.

We first define the function:

def on_files_checkbox_change(change):

The event handler function defines a callback function named on_files_checkbox_change that

will execute when the state of files_checkbox changes. change is provided by the observer, which

contains information about the change event, including the following:

•	 old: The previous state of the checkbox

•	 new: The new state of the checkbox

 # Only remove images if the checkbox changed from True to False.

 if change['old'] == True and change['new'] == False:

The code verifies whether the checkbox was previously checked (True) and has now been un-

checked (False). This guarantees that the file deletion only occurs when the user explicitly un-

checks the checkbox, preventing accidental file removal. We now remove the file:

 if os.path.exists("c_image.png"):

 os.remove("c_image.png")

We also need to add an observer to inform the on_files_checkbox_change function when there

is a file status change:

Attach the observer to files_checkbox

files_checkbox.observe(on_files_checkbox_change, names='value')

Enhancing the GenAISys with DeepSeek244

The files_checkbox.observe() function links the on_files_checkbox_change function to the

files_checkbox widget. names='value' specifies that the function should be triggered when the

value of the checkbox changes (i.e., when it is checked or unchecked).

We will now move on to the next part of the pipeline and implement the handler selection mech-

anism.

2. Handler selection mechanism
The handler selection mechanism dynamically selects and executes the appropriate handler based

on predefined conditions. It iterates through available handlers, evaluating conditions until it

finds a match, ensuring efficient and structured processing of the user input. The handler selec-

tion mechanism is in the chat_with_gpt function we built in the previous chapters. However, it

now contains an orchestration task, as shown in Figure 7.7:

•	 chat_with_gpt remains a pivotal function within the GenAISys and now contains the

handler mechanism

•	 It checks conditions sequentially to decide which handler to invoke

•	 It falls back to a memory-based handler if no conditions match

•	 It ensures robustness with error handling for an uninterrupted user experience

Figure 7.7: The orchestration role of the handler mechanism

In the broader GenAISys workflow, the handler mechanism acts as an orchestrator. It processes

user inputs and identifies which AI functions to activate. When the IPython interface captures

user messages, the handler mechanism evaluates these inputs to determine the appropriate

handler from the handler registry. If no specific handler matches, it defaults to a memory-based

response, which is then returned to the IPython interface.

Chapter 7 245

The chat_with_gpt function encapsulates this logic. It iterates through a predefined list of han-

dlers, each paired with a corresponding condition function. When a condition evaluates to true,

the associated handler is executed. If none match, the fallback memory-based handler ensures

a seamless response:

def chat_with_gpt(

 messages, user_message, files_status, active_instruct, models

):

 global memory_enabled # Ensure memory is used if set globally

Let’s go through the parameters of the function:

•	 messages: The conversation history between the user and the AI

•	 user_message: The latest message from the user

•	 files_status: Tracks the status of any files involved in the conversation

•	 active_instruct: Any instruction or mode that might influence how responses are gen-

erated

•	 models: Specifies the active AI model in use

The function uses global memory_enabled to access a global variable that determines whether

memory should be applied to store/remember the full dialogue of a user. In this chapter, global

memory_enabled=True.

The function attempts to execute the appropriate handler based on the provided conditions:

 try:

 # Iterate over handlers and execute the first matching one

 for condition, handler in handlers:

 if condition(messages, active_instruct, memory_enabled,

 models, user_message):

 return handler(messages, active_instruct, memory_enabled,

 models, user_message, files_status=files_status)

As you can see, for condition, handler in handlers iterates over a list called handlers, where

each item is a tuple containing the following items:

•	 A condition function to check whether a handler should be used

•	 A handler function to execute whether the condition is satisfied

•	 A generic if condition, (...), to evaluate the condition function with the provided pa-

rameters

Enhancing the GenAISys with DeepSeek246

•	 The code returns the output of the corresponding handler if the condition is met, imme-

diately exiting the function

Let’s now add a fallback if no handlers match the input conditions:

 # If no handler matched, default to memory handling with full
conversation history

 return handle_with_memory(

 messages, # Now passing full message history

 user_message,

 files_status=files_status,

 instruct=active_instruct,

 mem=memory_enabled, # Ensuring memory usage

 models=models

)

handle_with_memory is called as a default handler that does the following:

•	 Uses the full conversation history (messages)

•	 Considers memory if memory_enabled is true, which is the case in this chapter

•	 Returns the response directly if executed

Finally, let’s add an exception to catch return errors:

 except Exception as e:

 return f"An error occurred in the handler selection mechanism:
{str(e)}"

With the handler selection mechanism defined, we can now proceed to build the handler registry

that stores these handlers.

3. Handler registry
The handler registry is a structured collection of condition-handler pairs, where each condition

is a lambda function that evaluates user messages and instructions to determine whether spe-

cific criteria are met. When a condition is satisfied, the corresponding handler is triggered and

executed immediately, as illustrated:

Chapter 7 247

Figure 7.8: Creating the handler registry

The handler registry has three main features:

•	 Is orchestrated by the handler mechanism and can be unlimited

•	 Routes inputs based on keywords, instructions, or model selection

•	 Guarantees a fallback response if no conditions match

We will design our handler registry with the following structure of four key properties:

•	 Handler registration: Creates a list of handlers, each with a condition function and a

corresponding handler function

•	 Specific handler conditions: Sequentially checks whether an input meets any of the

specific conditions

•	 Fallback handler: Adds a default memory-based handler if none of the conditions match

•	 Execution: When a condition is satisfied, the corresponding handler is executed imme-

diately

The role of **kwargs in the code provides a flexible way to interact with the AI functions. **kwargs

is short for keyword arguments and is used in Python functions to allow passing a variable number

of arguments to a function. In the context of our handler registry code, **kwargs plays a crucial

role by allowing handlers to accept additional, optional parameters without explicitly defining

them in the function. It makes the handlers extensible for future updates or new parameters

without requiring modifications to existing function signatures.

 All lambda functions have four parameters (msg, instruct, mem, and models). This

ensures that the number of arguments matches when chat_with_gpt() calls a

handler.

Enhancing the GenAISys with DeepSeek248

We will now begin to build the handler registry with the Pinecone/RAG handler.

Pinecone/RAG handler
The Pinecone/RAG handler manages the retrieval-augmented generation (RAG) functions previ-

ously defined. It activates when detecting the Pinecone or RAG keyword within the user message:

 # Pinecone / RAG handler: check only the current user message

 (

 lambda msg, instruct, mem, models, user_message,

 **kwargs: “Pinecone” in user_message or “RAG” in user_message,

 lambda msg, instruct, mem, models, user_message,

 **kwargs: handle_pinecone_rag(user_message, models=models)

),

This handler checks whether the user message contains “Pinecone” or “RAG,” in which case

lambda: returns True; otherwise, it returns False. We will now create the reasoning handler.

Reasoning handler
We have already built the reasoning function, but now we need a handler. The keywords that

trigger the handler are Use reasoning, customer, and activities. Any additional text in the

message provides context for the reasoning process. The handler uses all() to ensure all key-

words are included in the message:

 # Reasoning handler: check only the current user message

 (

 lambda msg, instruct, mem, models, user_message, **kwargs: all(

 keyword in user_message for keyword in [

 “Use reasoning”, “customer”, “activities”

]

),

 lambda msg, instruct, mem, models, user_message, **kwargs:

 handle_reasoning_customer(user_message, models=models)

),

Let’s move on and create the analysis handler.

Chapter 7 249

Analysis handler
The analysis handler has been used for memory analysis up to now and is triggered by the Analysis

instruction:

 # Analysis handler: determined by the instruct flag

 (

 lambda msg, instruct, mem, models, user_message,

 **kwargs: instruct == “Analysis”,

 lambda msg, instruct, mem, models, user_message,

 **kwargs: handle_analysis(

 user_message, models=models)

),

Time to create the generation handler.

Generation handler
The generation handler takes memory analysis to another level by asking the generative AI

model to generate an engaging text for a customer based on a memory analysis of the text. The

Generation instruction triggers the generation handler:

 # Generation handler: determined by the instruct flag

 (

 lambda msg, instruct, mem, models, user_message,

 **kwargs: instruct == “Generation”,

 lambda msg, instruct, mem, models, user_message,

 **kwargs: handle_generation(

 user_message, models=models)

),

Let’s now build the image creation handler.

Image handler
The image creation handler is triggered by the Create and image keywords in the user message:

 # Create image handler: check only the current user message

 (

 lambda msg, instruct, mem, models, user_message,

 **kwargs: “Create” in user_message and “image” in user_message,

Enhancing the GenAISys with DeepSeek250

 lambda msg, instruct, mem, models, user_message,

 **kwargs: handle_image_creation(user_message, models=models)

)

]

We will now create the freestyle handler for when there is no keyword or instructions.

Fallback memory handler
This handler is a general-purpose handler when there is no instruction or keyword to trigger a

specific function. Let’s append the fallback memory handler accordingly:

Append the fallback memory handler for when instruct is “None”

handlers.append(

 (

 lambda msg, instruct, mem, models, user_message,

 **kwargs: instruct == “None”,

 lambda msg, instruct, mem, models, user_message,

 **kwargs: handle_with_memory(

 msg,

 user_message,

 files_status=kwargs.get(‘files_status’),

 instruct=instruct,

 mem=memory_enabled, # Replace user_memory with memory_enabled

 models=models

)

)

)

You can add as many handlers and AI functions as you wish to the handler registry. You can scale

your GenAISys as much as you need to. You can also modify the keywords by replacing them with

explicit instructions, as we did for the Analysis and generation functions. The handlers will

then call all the AI functions you need.

Let’s now go through the new organization of the AI functions.

Note that we have replaced user_memory with memory_enabled to generalize mem-

ory management.

Chapter 7 251

4. AI functions
We will now run the AI functions that are activated by the handler registry. The functions build

on those from earlier chapters but are now managed by the handler-selection mechanism intro-

duced in this chapter. Additionally, the examples used in this section are based on typical prompts

related to product design and production scenarios. Keep in mind that, due to the stochastic

(probabilistic) nature of generative AI models, outputs can vary each time we run these tasks.

Figure 7.9: AI functions call by the handler selection mechanism and registry

We’ll now execute all AI functions currently available in our GenAISys, incorporating DeepSeek

model calls where applicable. Let’s begin with the RAG functions.

RAG
This RAG function can run with OpenAI or DeepSeek with the Pinecone keyword in the user

message. The RAG function’s name has changed, but its process remains unchanged for the query:

Define Handler Functions

def handle_pinecone_rag(user_message, **kwargs):

 if "Pinecone" in user_message:

 namespace = "genaisys"

Functions such as speech synthesis, file management, dialogue history, and summary

generation remain unchanged from previous chapters.

Enhancing the GenAISys with DeepSeek252

 if "RAG" in user_message:

 namespace = "data01"

 print(namespace)

 query_text = user_message

 query_results = get_query_results(query_text, namespace)

 print("Processed query results:")

 qtext, target_id = display_results(query_results)

 print(qtext)

 # Run task

 sc_input = qtext + " " + user_message

However, the function now contains a DeepSeek distilled R1 call. The function first defaults to

OpenAI if no model is provided or if DeepSeek is deactivated:

 models = kwargs.get("models", "OpenAI") # Default to OpenAI if not
provided

 if models == "DeepSeek" and deepseek==False:

 models="OpenAI"

 if models == "OpenAI":

 task_response = reason.make_openai_api_call(

 sc_input, "system","You are an assistant who executes the tasks you
are asked to do.", "user")

If DeepSeek is activated, it will be called if chosen in the IPython interface for this task:

 if models == "DeepSeek":

 …

 return f"{namespace}:{models}: {task_response}"

We will first run a sentiment analysis.

Chapter 7 253

Sentiment analysis (genaisys)
An example user input by the PDPM is the following:

Let's see what Pinecone thinks about this sentence: The customer did not
like the design of the traveling bag we gave out because it was not the
right color requested.

The output with OpenAI selected (default) and Agent checked will be as follows:

Agent: genaisys:OpenAI: Sentiment analysis score: 0.3

Explanation: The sentiment of the text is predominantly negative. The
customer expresses dissatisfaction with the traveling bag due to it not
being the right color as requested. The use of phrases like "did not
like" and "not the right color" indicates a negative sentiment, as the
customer's expectations were not met. The score of 0.3 reflects this
negative sentiment, though it is not extremely low because the issue is
specific to the color and not the overall quality or functionality of the
bag.

On the other hand, the output with DeepSeek selected (default) and Agent checked will be as

follows:

Agent: genaisys:DeepSeek:

…The numerical value should be between 0 and 1, so let's say 0.2….

Wait, but the user didn't specify a particular method or model for
sentiment analysis. Maybe they want a simple rule-based approach? Let's
consider the presence of negative words like "did not like" and "not the
right color requested." These words indicate dissatisfaction. However,
the sentiment isn't extremely negative since it's just one aspect (color)
that's the issue, not the entire product or experience. So, a score of 0.2
seems appropriate because it reflects a moderate negative sentiment based
on the specific criticism given.

Enhancing the GenAISys with DeepSeek254

The sentiment score and explanation score are acceptable in both cases. Imagine receiving

thousands of such customer feedback messages—the GenAISys filters the low scores and

provides these outputs automatically, storing them in the customer database.

Now, the PDPM checks semantic analysis.

Semantic analysis (genaisys)
Consider another example input by the PDPM:

Let's see what meaning analysis Pinecone on this comment: The customer did
not accept the traveling bag we gave out for free because the size and
colors did not match the order processed.

This RAG function can run with OpenAI or DeepSeek with a “Pinecone” keyword in the user

message.

OpenAI’s output is acceptable and clearly outlines the semantic relationships within the message:

Agent: genaisys:OpenAI: Semantic analysis involves understanding the
meaning and interpretation of words, phrases, and sentences in context.
It is a crucial aspect of natural language processing (NLP) that helps
in extracting meaningful information from text. In the context of your
comment, semantic analysis would involve breaking down the sentence to
understand the underlying meaning and the relationships between different
components of the sentence.

Here's a breakdown of the semantic elements in the comment:

1. Subject: "The customer" - This refers to the individual who is the
focus of the action.

2. Action: "did not accept" - This indicates the customer's refusal or
rejection of something.

3. Object: "the traveling bag we gave out for free" - This is the item
that was offered to the customer without charge.

4. Reason: "because the size and colors did not match the order processed"
- This provides the explanation for the customer's refusal, indicating a
mismatch between what was expected (the order) and what was received (the
traveling bag).

…

DeepSeek’s output is relevant as well:

Agent: genaisys:DeepSeek: 300,Semantic analysis…This is not an analysis
but a semantic search. Provide more information on the topic. …

Chapter 7 255

The original problem was that the customer didn't accept the travel bag
due to mismatched size and color from the ordered one. So, my goal here
should be to understand why this happened and perhaps suggest solutions.

I think the first step would be to look into whether there was a
miscommunication in the ordering process. Maybe the website had incorrect
images or descriptions leading to wrong expectations. Or perhaps during
manufacturing, sizes got altered without notice. Another angle could be
customer feedback—have others reported similar issues? It might also help
to check if there were any system errors in processing orders which caused
discrepancies between what was ordered and what was delivered.

…

Final Answer

After conducting thorough research and identifying potential contributing
factors, effective solutions have been implemented to address the
discrepancy issues, resulting in improved satisfaction among customers
receiving accurate products aligned with their expectations.

DeepSeek’s answer is longer and more complex. However, what would a team prefer? A shorter

answer like OpenAI’s response or a longer one with more explanations? The decision can be

reached through workshops and meetings.

Data retrieval (data01)
Both OpenAI and DeepSeek can be used for data retrieval. The user input for a product designer

could be as follows:

I'm a product designer and am trying to analyze human memory types. Use
RAG to tell us what the CTO said about different memory types

The output is satisfactory:

Agent: data01:OpenAI: To analyze the CTO's statement about different
memory types using Retrieval-Augmented Generation (RAG), we can break down
the information into the relevant memory types and their application in
the hybrid travel marketing campaign:

1. Memoryless: This refers to systems or processes that do not retain any
information from past interactions. In the context of your campaign, this
might relate to interactions that do not require historical data, such as
one-time queries or transactions…

Enhancing the GenAISys with DeepSeek256

We thus have a flexible RAG system in our GenAISys that can run with the models we wish. How-

ever, we still have to evaluate the models for each set of tasks we want to perform.

Chain of thought
The CoT function operates with Files checked and defaults to OpenAI as the model provider. Its

implementation remains consistent as it is built and run in the previous chapter. The key differ-

ence is that it is now integrated into the handler selection mechanism, which activates based on

specific keywords in the input:

def handle_reasoning_customer(user_message, **kwargs):

 initial_query = user_message

 download("Chapter05", "customer_activities.csv")

 reasoning_steps = reason.chain_of_thought_reasoning(initial_query)

 return reasoning_steps

Consider an example user input from the PDPM:

Use reasoning to analyze customer activities so I can design custom travel
merchandise kits.

The output seems acceptable:

Agent: data01:OpenAI: To analyze the CTO's statement about different
memory types using Retrieval-Augmented Generation (RAG), we can break
down the memory types mentioned and their relevance to the hybrid travel
marketing campaign:

1. Memoryless: This refers to systems or processes that do not retain
any information from past interactions. In the context of a marketing
campaign, this would mean treating each customer interaction as a
standalone event without any historical context….

Let’s now see how memory analysis will run with both model sources (OpenAI and DeepSeek).

Analysis (memory)
Both OpenAI and DeepSeek models handle memory-based customer profiles using neuroscien-

tific-style categorizations. The function has been adapted to the handler selection process and

contains a DeepSeek call:

def handle_analysis(user_message, **kwargs):

 from cot_messages_c6 import system_message_s1

Chapter 7 257

 models = kwargs.get("models", "OpenAI") # Default to OpenAI if not
provided

 if models == "DeepSeek" and deepseek==False:

 models="OpenAI"

 if models == "OpenAI":

 reasoning_steps = reason.make_openai_reasoning_call(

 user_message, system_message_s1)

 if models == "DeepSeek":

 …

 return reasoning_steps

An example user input using the Analysis option in the Reasoning list could be:

The hotel was great because the view reminded me of when I came here to
Denver with my parents. I sure would have like to have received a custom
T-shirt as a souvenir. Anyway, it was warm and sunny so we had an amazing
time.

OpenAI’s output contains a useful segment highlighting the emotional dimension related to the

customer’s wish for a personalized souvenir, which could help the product designer with their

merchandise kit production endeavor:

…

Segment 2: "I sure would have like to have received a custom T-shirt as a
souvenir."

- Memory Tags: [Episodic Memory]

- Dimension: Emotional

- Sentiment Score: 0.4

- Explanation: Here the speaker expresses a personal wish or regret about
a missing souvenir from the event. Although it doesn't recount an actual
episode in detail, it still connects to the personal event and reflects a
feeling of slight disappointment, thereby engaging episodic memory and an
emotional dimension with a modestly negative sentiment.

DeepSeek’s output, however, goes off track. It first finds the right task to do:

Okay let's see this through step by step now...

Alright, I need to tackle analyzing segments from the given user response
according to their detailed tagging system based on cognitive psychology

Enhancing the GenAISys with DeepSeek258

principles regarding STM vs LTM, semantic versus episodic memory, reality
vs fiction, among others plus dimensions such as Intellectual, Emotional,
Physical, along with assigning sentiments scores ranging from 0-1
reflecting positivity.

Let me start reading carefully paragraph-wise.

First sentence:"The hotel wasgreatbecauseviewremindedmeofwhencyamehere
todallas."

But it then gets lost and seems to struggle with formatting and coherence, introducing irregular

spacing and even foreign characters:

…Butwait,theuser later talks about souvenirs
wantingcustomTshirtswhichmaybe indicatespositiveintent。…

但此处更多的是体验性的(Eating和Enjoying)=所以可能既有知识元素也有身体维度的食物
味道。但主要在这里是描述经历，因此属于Episode或语义吗？…

DeepSeek can certainly do better, but improving this result would require additional iterations

of prompt refinement or selecting a more robust DeepSeek variant or API. Investing time in re-

fining prompts carries some risk, as even then, the outcome may not meet your expectations.

Whether to refine the prompt, switch to a DeepSeek API, explore another DeepSeek variant, or

default to OpenAI should ultimately be decided collaboratively within the team and based on

your project’s needs.

Let’s now move on to running the generation function.

Generation
The generation function (select Generation in the Reasoning list), active by default with OpenAI,

Agent, and Files checked, supports the creation of engaging, memory-based customer messages:

def handle_generation(user_message, **kwargs):

 from cot_messages_c6 import (

 system_message_s1, generation, imcontent4, imcontent4b

)

 reasoning_steps = reason.memory_reasoning_thread(

 user_message, system_message_s1, generation,

 imcontent4, imcontent4b

)

 return reasoning_steps

Chapter 7 259

Let’s consider a general user input as an example:

The hotel was great because the view reminded me of when I came here to
Denver with my parents. I sure would have like to have received a custom
T-shirt as a souvenir. Anyway, it was warm and sunny so we had an amazing
time.

OpenAI’s output is an appealing customer-facing message, blending nostalgia and merchandising

suggestions, accompanied by an appropriate custom T-shirt image:

Customer message: Dear Customer,

Experience the charm of Denver with a nostalgic hotel view and enjoy the
sunny weather. Explore the beautiful Denver Botanic Gardens and the iconic
Red Rocks Amphitheatre. Don't miss out on exclusive souvenirs from local
artists and a personalized T-shirt to remember your trip.

Best regards,

Figure 7.10: A personal image for a customer

Let’s now create an image.

Creating an image
This functionality utilizes DALL-E to generate images, with the Files box checked. The function

does not change beyond being adapted to the handler-selection mechanism, which activates this

feature with the Create and image keywords in the user input:

def handle_image_creation(user_message, **kwargs):

 prompt = user_message

Enhancing the GenAISys with DeepSeek260

 image_url = reason.generate_image(

 prompt, model="dall-e-3", size="1024x1024",

 quality="standard", n=1

)

 # Save the image locally

 save_path = "c_image.png"

 image_data = requests.get(image_url).content

 with open(save_path, "wb") as file:

 file.write(image_data)

 return "Image created"

The product designer could use it to ideate merchandising kits:

Create an image: Create an image of a custom T-shirt with surfing in
Hawaii on big waves on it to look cool.

The output is a cool T-shirt that the production team could use and adapt for production:

Figure 7.11: Custom T-shirt design

We will now create freestyle prompts that are not triggered by any keywords or instructions.

Chapter 7 261

Fallback handler (memory-based)
This general-purpose handler activates when no specific instruction or keyword matches the

input. handle_with_memory runs with OpenAI and DeepSeek, depending on the model selected.

The memory of a user dialogue is set with a global variable, memory_enabled, that is initialized

at the beginning:

Global variable to ensure memory is always used

memory_enabled = True # Set to True to retain conversation memory

def handle_with_memory(messages, user_message, **kwargs):

 global memory_enabled # Ensure global memory setting is used

The function will return a message and stop if memory_enabled is set to False:

 # If memory is disabled, respond with a message

 if not memory_enabled:

 return "Memory is disabled."

It will process the past messages of a user from the conversation history:

 # Extract all past messages (user + assistant) from the conversation
history

 conversation_history = [

 f"{msg['role'].capitalize()}: {msg['content']}"

 for msg in messages if "content" in msg

]

 # Combine all conversation history

 combined_history = "\n".join(conversation_history)

 # Append the latest user message to the history

 full_context = f"{combined_history}\nUser: {user_message}"

Then, the models are selected with OpenAI being the default model provider if no other model

is selected in the IPython interface:

 models = kwargs.get("models", "OpenAI") # Default to OpenAI if not
provided

 if models == "OpenAI":

 task_response = reason.make_openai_api_call(

 full_context, "system",

Enhancing the GenAISys with DeepSeek262

 "You are an assistant who executes the tasks you are asked to
do.", "user"

)

 elif models == "DeepSeek":

 # Tokenize the full conversation history for DeepSeek

 …

 # Decode the output

 task_response = tokenizer.decode(outputs[0], skip_special_
tokens=True)

The response message is stored and returned:

 # Store bot response in memory

 messages.append({"role": "assistant", "content": task_response})

 return task_response

An example input by the PDPM could be the following:

We are new to production processes and experience issues with the
production of a customized travel bag by Supplier S100 for a trip to
Hawaii that should have an image of Hawaii on it with the name of the
customer. The production process contained operations 10,20,30,40,50 and
60. Operation 40 is the operation that prints the image and the name of
the customer on the bag. Supplier S100 lacks the special ink to perform
the operation. SupplierS200 has the ink but the production of operations
10 to 30 have already been performed. Instructions: think this problem
through and provide real-world production ideas to solve this issue.

OpenAI’s answer is both acceptable and productive. Take your time to read the prompt and the

response, which shows the transition of generative AI from NLP general tasks to zero-shot do-

main-specific tasks:

Agent: To address the issue of Supplier S100 lacking the special ink
needed for operation 40, while Supplier S200 has the ink, consider the
following real-world production solutions:

1. Outsource Operation 40 to Supplier S200:

- Coordinate with Supplier S200 to perform operation 40. This involves
transporting the semi-finished bags (after operations 10 to 30) to
Supplier S200 for printing.

- Ensure that Supplier S200 is capable of handling the volume and has the

Chapter 7 263

necessary equipment to perform the operation to your quality standards.

2. Ink Transfer:

- If feasible, arrange for Supplier S200 to supply the special ink to
Supplier S100. This would allow Supplier S100 to continue with operation
40 without needing to transport the bags.

- Ensure that Supplier S100 has the necessary equipment and expertise to
use the ink provided by Supplier S200.

3. Collaborative Production:

- Establish a partnership between Supplier S100 and Supplier S200 where
both suppliers work together to complete the production process. This
could involve sharing resources, expertise, and logistics.

4. Logistics and Scheduling:

- Plan the logistics for transporting the bags between suppliers
efficiently to minimize delays.

- Adjust the production schedule to accommodate the additional time
required for transportation and coordination between suppliers.

5. Quality Control:

- Implement a quality control process to ensure that the printing meets
the required standards, regardless of which supplier performs the
operation.

- Conduct inspections before and after operation 40 to maintain quality
consistency.

6. Communication and Coordination:

- Maintain clear communication with both suppliers to ensure that
all parties are aligned on timelines, quality expectations, and
responsibilities.

- Use project management tools to track progress and address any issues
promptly.

7. Contingency Planning:

- Develop a contingency plan in case of further supply chain disruptions,
such as identifying alternative suppliers or inks that could be used in
the future.

Enhancing the GenAISys with DeepSeek264

DeepSeek’s answer does not provide the same quality, although it contains some interesting

points:

C.), Utilize Alternate Suppliers With Intermediaries Who Could Possibly
Acquire Required Inks From Other Sources Perhaps Via Importing Directly
Under Different Terms Agreements,

D). Leverage Existing Inventory Wherever Feasible Reallocating Stockpiles
Smartly Across Production Lines Maybe Even Repurposing Materials When Not
Used For Primary Function Into Secondary Applications Which May Free Up
Costs And Resources While Mitigating Penalties Imposed By Delays,

Obtaining a better result would require further prompt design and output analysis cycles, eval-

uating DeepSeek models that are not distilled, such as DeepSeek-V3 or DeepSeek-R1. DeepSeek

can surely do better, as demonstrated by using DeepSeek-R1 on https://chat.deepseek.com/,

which produced the following output:

To resolve the production issue with the customized travel bags, consider
the following structured solutions:

1. **Outsource Operation 40 to Supplier S200**

 - **Process**:

 - S100 ships semi-finished bags (post-operation 30) to S200.

 - S200 performs operation 40 (printing) using their special ink.

 - Bags are returned to S100 to complete operations 50 and 60.

 - **Key Considerations**:

 - Use expedited shipping (e.g., air freight) to minimize delays.

 - Ensure packaging protects semi-finished goods during transit.

 - Negotiate cost-sharing for logistics between S100 and S200.

2. **Expedite Ink Procurement for S100**

 - **Action**:

 - Source the ink directly from S200 or an alternative supplier.

 - Prioritize urgent delivery (e.g., same-day courier).

 - **Feasibility Check**:

 - Verify if the ink is proprietary or available on the open market.

 - Address contractual barriers if S200 is a competitor.

3. **Supplier Collaboration for End-to-End Production**

 - **Option**:

https://chat.deepseek.com/

Chapter 7 265

 - S200 takes over all remaining steps (40, 50, 60) after S100
completes operations 10–30.

 - **Requirements**:

 - Confirm S200's capability to perform operations 50 and 60.

 - Align quality standards between suppliers to avoid inconsistencies.

4. **Process Re-engineering**

 - **Temporary Workaround**:

 - Explore alternative printing methods (e.g., heat transfer, patches)
if customer specs allow.

 - Assess feasibility of resequencing operations (e.g., printing
later), though this is unlikely.

5. **Proactive Communication and Risk Mitigation**

 - **Customer Transparency**:

 - Inform the customer of potential delays and offer solutions (e.g.,
partial deliveries, discounts).

 - **Prevent Future Issues**:

 - Implement dual sourcing for critical materials (e.g., ink).

 - Use inventory management tools to track material availability in
real-time.

Cost vs. Speed Tradeoff Analysis

- **Outsourcing to S200**: Higher logistics costs but faster resolution if
suppliers are geographically close.

- **Expedited Ink**: Higher material costs but avoids production handoffs.

Recommended Approach

1. **Prioritize Outsourcing Operation 40**:

 - This balances speed and feasibility if S200 can print without
disrupting the workflow.

2. **Backup Plan**:

 - If logistics are too slow, expedite ink procurement while negotiating
with S200 for a bulk discount.

By combining supplier collaboration, agile logistics, and proactive
planning, the production delay can be minimized while maintaining quality
and customer trust.

Enhancing the GenAISys with DeepSeek266

Read the prompts and outputs in this section carefully. For security and privacy reasons, we are

using only a locally installed, distilled Hugging Face open source version of DeepSeek-R1. However,

you could use the online version of DeepSeek for certain tasks, such as the production example in

this section, if you have the necessary permissions, just as you would with ChatGPT or any other

online platform. Depending on your project’s specifications, you could also explore US-based

DeepSeek APIs or alternative deployment approaches.

In any case, both OpenAI and DeepSeek are capable of delivering effective production solutions

when correctly prompted and when the most appropriate model version is selected. Generative

AI has clearly entered a new phase!

Summary
In this chapter, we moved further along our journey into generative AI systems. First, we took

the time to digest the arrival of DeepSeek-R1, a powerful open source reasoning model known for

innovative efficiency improvements in training. This development immediately raised a critical

question for project managers: should we constantly follow real-time trends or prioritize main-

taining a stable system?

To address this challenge, we developed a balanced solution by building a handler selection

mechanism. This mechanism processes user messages, triggers handlers within a handler reg-

istry, and then activates the appropriate AI functions. To ensure flexibility and adaptability, we

updated our IPython interface, allowing users to easily select between OpenAI and DeepSeek

models before initiating a task.

This design allows the GenAISys administrator to introduce new experimental models or any

other function(non-AI, ML, or DL) while maintaining access to proven results. For instance, when

analyzing user comments, administrators can run tasks using the reliable OpenAI model while

simultaneously evaluating the DeepSeek model. Administrators can also disable specific models

when necessary, providing a practical balance between stability and innovation, which is crucial

in today’s fast-paced AI environment.

To achieve this balance practically, we began by installing and running DeepSeek-R1-Distill-Lla-

ma-8B in an independent notebook, demonstrating its capabilities through production-related

examples. We then integrated this distilled model into our GenAISys, creating a need for enhanced

flexibility and scalability.

Chapter 7 267

The introduction of the handler selection mechanism and the structured handler registry ensures

that our system can scale effectively and indefinitely. Each handler follows a unified, modular for-

mat, enabling easy management, activation, or deactivation by administrators. We demonstrated

these handlers through a series of practical prompts related to product design and production.

We are now positioned to expand and scale our GenAISys, adding new features within this adapt-

able framework. In the next chapter, we’ll continue this journey by connecting our GenAISys to

the broader external world.

Questions
1.	 DeepSeek-V3 was trained with zero-shot examples. (True or False)

2.	 DeepSeek-R1 is a reasoning model. (True or False)

3.	 DeepSeek-R1 was first trained with RL-only. (True or False)

4.	 DeepSeek-R1-Distill-Llama-8B is the teacher of DeepSeek-R1. (True or False)

5.	 DeepSeek-V3 was enhanced with DeepSeek-R1, which was derived from DeepSeek. (True

or False)

6.	 A handler registry that contains a list of handlers for all the AI functions is scalable. (True

or False)

7.	 A handler selection mechanism that processes user messages makes the GenAISys highly

flexible. (True or False)

8.	 Generative AI models such as OpenAI and DeepSeek reasoning models solve a wide range

of problems with no additional training. (True or False)

9.	 A GenAISys with a solid architecture is sufficiently flexible to be expanded in terms of

models and tasks to perform. (True or False)

References
•	 DeepSeek-V3 Technical Report. https://arxiv.org/abs/2412.19437

•	 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Po-

losukhin, I. (2017). Attention Is All You Need. Advances in Neural Information Processing

Systems, 30, 5998–6008. Available at: https://arxiv.org/abs/1706.03762

•	 DeepSeekAI, Daya Guo, Dejian Yang, et al: https://arxiv.org/abs/2501.12948

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2501.12948

Enhancing the GenAISys with DeepSeek268

•	 Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goy-

al, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., & Lample, G. (2023). LLaMA:

Open and Efficient Foundation Language Models. https://arxiv.org/abs/2302.13971)

•	 Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur,

A., Schelten, A., Vaughan, et al. (2024). The Llama 3 Herd of Models. https://arxiv.org/
abs/2407.21783

•	 Hugging Face:

•	 https://huggingface.co/docs/transformers/index

•	 https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

•	 https://huggingface.co/docs/inference-endpoints/en/security

•	 Unsloth AI: https://unsloth.ai/

Further reading
•	 Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh, D. (2023). GPTQ: Accurate Post-Training

Quantization for Generative Pre-trained Transformers https://arxiv.org/abs/2210.01774)

•	 NVIDIA’s data center GPUs: https://www.nvidia.com/en-us/data-center/

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name.

Note: Keep your purchase invoice ready before you start.

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://huggingface.co/docs/transformers/index
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/docs/inference-endpoints/en/security
https://unsloth.ai/
https://arxiv.org/abs/2210.01774
https://www.nvidia.com/en-us/data-center/
http://packtpub.com/unlock

8
GenAISys for Trajectory
Simulation and Prediction

As AI’s role continues to expand, trajectory analysis has permeated all human activity, from pizza

deliveries to genome sequencing. This chapter introduces city-scale mobility prediction, high-

lighting how missing or noisy coordinates can undermine real-world applications in deliveries,

disaster management, urban planning, and epidemic forecasting. The architecture of our mobility

system draws inspiration from the innovative work of Tang et al. (2024).

We will first build and integrate an advanced trajectory simulation and prediction pipeline into

our GenAISys using the 1_Trajectory_simulation_and_prediction.ipynb notebook. The main

objective is to address the challenge of modeling human mobility, both short- and long-term, by

leveraging synthetic data generation and large language models (LLMs). We then demonstrate

how to build upon this idea using Python-based solutions, complete with a custom synthetic grid

generator that simulates random trajectories through a two-dimensional city map, deliberately

inserting missing data for testing. These random trajectories could represent deliveries or other

sequences, such as travel packages (custom bags or booklets) for an online travel agency.

Next, we will build a multistep orchestrator function that merges user instructions, the synthetic

dataset, and domain-specific messages before passing them to an LLM-driven reasoning thread.

The model will detect and predict unknown positions marked by placeholder values (such as

999, 999), filling these gaps through contextual interpolation. This approach demonstrates the

interpretability of text-based predictions while maintaining a systematic chain of thought, in-

cluding debugging steps such as logging missing points before producing the final JSON output.

GenAISys for Trajectory Simulation and Prediction270

To support robust user interaction, we will integrate the trajectory pipeline into the GenAISys

multihandler environment we’ve built, allowing requests for “mobility” instructions to trigger

the creation and analysis of trajectories. We will implement a trajectory simulation and prediction

interface. Visualization components are incorporated, automatically producing and displaying

the resulting path (including direction arrows, missing data markers, and coordinate fixes) as a

static image. The synergy between data generation, LLM inference, and the user interface show-

cases the end-to-end viability of our method, empowering users to apply trajectory simulation

and prediction across different domains as needed.

This chapter provides a blueprint for coupling synthetic trajectory datasets with a prompt-driven

LLM approach in the GenAISys. By following the design patterns described by Tang et al., we will

explore how purely text-oriented models can excel at spatial-temporal reasoning with minimal

structural modifications. Bridging mobility simulation and user-friendly interfaces can provide

highly interpretable, fine-grained predictions for a variety of mobility analytics scenarios.

This chapter covers the following topics:

•	 Trajectory simulations and predictions

•	 Building a trajectory simulation and prediction function

•	 Adding mobility intelligence to the GenAISys

•	 Running the mobility-enhanced GenAISys

Let’s begin by defining the scope of the trajectory simulation and prediction framework.

Trajectory simulations and predictions
This section is inspired by Instruction-Tuning Llama-3-8B Excels in City-Scale Mobility Prediction by

Tang et al. (2024). We will explore the essential background on the challenges of human mobility

prediction, the paper’s key contributions, and how these ideas can be translated into practical

Python implementations.

Human mobility prediction focuses on forecasting where and when individuals (or groups) will

travel, and it plays a critical role in an expanding set of domains, including the following:

•	 Disaster response, for predicting the paths of wildfires, population movements during

crises, or the impacts of earthquakes

•	 Urban planning, for modeling short- and long-term mobility patterns to help city plan-

ners optimize public transport and infrastructure

Chapter 8 271

•	 Epidemic forecasting, for simulating and predicting the spread of infectious diseases

in a region

In our case, we will first apply mobility prediction to the delivery of customized products (e.g.,

bags, T-shirts, and booklets) for an online travel agency’s customers.

Traditionally, these predictions relied on specialized machine learning models, such as recurrent

neural networks (RNNs) with attention mechanisms or graph neural networks (GNNs). While

these techniques can be effective, they often require labor-intensive feature engineering and are

not easily generalizable across diverse locations or time horizons (e.g., short-term versus long-

term predictions).

Let’s now examine the key challenges motivating the use of LLMs to address these issues.

Challenges in large-scale mobility forecasting
Cutting-edge LLMs offer promising solutions to several challenges that have historically plagued

traditional mobility analysis and prediction systems:

•	 Long-term versus short-term forecasts: Predicting the next few steps (short-term) often

relies on temporal recurrences and immediate contextual information. However, extending

this to multi-day, city-scale horizons introduces additional complexities, such as changes

in user behavior, variations in daily routines, holidays, or unexpected events.

•	 Generalization across cities: A model trained on data from City A may fail when exposed

to the unique geography, population density, or cultural travel habits of City B. True city-

scale mobility solutions must be robust enough to handle these differences.

•	 Computational constraints: Real-world mobility datasets, especially those representing

entire metropolitan areas, can be enormous. Training sophisticated deep learning models

or LLMs can become computationally expensive.

•	 Data quality and missing data: Large-scale mobility datasets often have noise or missing

coordinates. Handling “gaps” in user trajectories (e.g., from GPS dropout or anonymization

processes) is a significant challenge.

While LLMs are not perfect, they provide an effective alternative to traditional models by address-

ing these key obstacles with minimal manual feature engineering. Let’s see how.

GenAISys for Trajectory Simulation and Prediction272

From traditional models to LLMs
The journey from traditional approaches to LLMs can be traced through a few groundbreaking

shifts. Traditional approaches consumed extensive human resources to design heuristics, engineer

features, and implement complex domain-specific solutions. In contrast, recent breakthroughs in

generative AI—such as Llama 3, GPT-4o, Grok 3, DeepSeek-V3, and DeepSeek-R1—have opened

exciting new avenues in reasoning and multimodal machine intelligence. And make no mistake—

this is just the beginning! Recent research highlights how these models can generalize well beyond

text-based tasks, excelling in the following:

•	 Time-series prediction

•	 Zero-shot or few-shot adaptation to new tasks

•	 Data preprocessing

Recent research has shown that LLMs, when guided by carefully crafted prompts or lightweight

fine-tuning, can even surpass specialized models in city-scale, long-horizon trajectory predic-

tion. In this chapter, we’ll demonstrate effective results with zero-shot prompting—without any

additional fine-tuning—using GPT-4o.

To understand this promising direction clearly, however, let’s first examine the key contributions

of the paper that served as a basis for this chapter.

Key contributions of the paper
It took a team consisting of Tang, P., Yang, C., Xing, T., Xu, X., Jiang, R., and Sezaki, K. (2024) to

take LLMs to the next level through three pivotal innovations.

Reformulating trajectory prediction as a Q&A
Instead of passing raw coordinate sequences into a standard regression or classification model,

the authors transform the input into a question that includes the following:

•	 An instruction block clarifying the domain context (city grid, coordinate definitions, day/

time indexing)

Chapter 8 273

•	 A question block providing historical mobility data with placeholders for missing

locations

•	 A request to generate the prediction results in a predefined, structured JSON format

This Q&A style leverages the LLM’s inherent ability to read instructions and produce structured

outputs.

Then, they fine-tuned the LLM.

Instruction tuning for domain adaptation
Instruction tuning is a technique where the LLM is fine-tuned with carefully designed prompts

and answers, teaching it to produce domain-specific outputs while still retaining its general

language reasoning capabilities. The authors showcase that even if you use only a fraction of the

mobility dataset for fine-tuning, the model can still generalize to new users or new cities. In our

case, we attained acceptable results without a dataset.

Surprisingly enough, as we will see when we build the Python program in the Building the tra-

jectory simulation and prediction function section, we achieve strong results even with a zero-shot,

no-fine-tuning approach, leveraging GPT-4o’s exceptional reasoning capability without needing

any domain-specific fine-tuning data.

The mobility research team then solved the issue of missing data.

Handling missing data
A common challenge in mobility datasets is the presence of missing coordinates, typically marked

with placeholder values such as 999. The LLM-based system is tasked explicitly with filling in these

gaps, effectively performing spatiotemporal imputation. Naturally, this approach is not without

limitations, which we’ll clearly illustrate through practical examples when we run our mobility

simulation. But before exploring these boundaries, let’s first dive into building our solution.

GenAISys for Trajectory Simulation and Prediction274

In the next section, we will develop a trajectory (mobility) simulation and analysis component

using OpenAI models. We will then integrate this mobility function into Layer 3 of our GenAISys,

as illustrated in Figure 8.1 with function F4.1. We will also update Layer 2 to register the handler

and ensure it can be activated at the IPython interface level in Layer 1.

Figure 8.1: Integrating trajectory simulations and predictions

Once the trajectory simulation and prediction component is integrated into our GenAISys, it can

be applied to deliveries and a wide range of mobility-related tasks. We will start by modeling the

delivery of customized goodies—such as branded bags, T-shirts, and booklets—for customers

of an online travel agency, and then explore other potential applications. For now, let’s build our

trajectory simulation!

Building the trajectory simulation and prediction
function
The goal of this section is to create a robust trajectory simulation, prepare the predictive functions,

and run an OpenAI LLM to analyze synthetic trajectory data and predict missing coordinates.

Later, in the Adding mobility intelligence to the GenAISys section, we’ll integrate this into our com-

prehensive GenAISys framework.

Open the 1_Trajectory_simulation_and_prediction.ipynb notebook within the Chapter08

directory on GitHub (https://github.com/Denis2054/Building-Business-Ready-Generative-

AI-Systems/tree/main). The initial setup mirrors the environment configuration in Chapter07/

GenAISys_DeepSeek.ipynb and includes the following:

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main

Chapter 8 275

•	 File downloading script

•	 OpenAI setup

•	 Chain-of-thought environment setup

We will build the program in three main steps, as shown in Figure 8.2:

•	 Creating the grid and trajectory simulation to generate real-time synthetic data

•	 Creating a mobility orchestrator that will call the trajectory simulation, import the mes-

sages for the OpenAI model, and call the analysis and prediction messages for the OpenAI

model

•	 Leveraging OpenAI’s model for trajectory analysis and predictions, called via the mobility

orchestrator

The mobility orchestrator will be added to the handlers registry in our GenAISys in the Adding

mobility intelligence to the GenAISys section and managed by the handler selection mechanism when

activated by the IPython interface. In this section, we will call the mobility orchestrator directly.

Figure 8.2 articulates the relationship between the mobility orchestrator, the trajectory simula-

tor, and the generative AI predictor. This mixture of agents maintains close alignment with the

framework of trajectory analysis and predictions.

Figure 8.2: The functions of the mobility orchestrator

We will first begin by creating the trajectory simulation.

GenAISys for Trajectory Simulation and Prediction276

Creating the trajectory simulation
The reference paper by Tang et al. demonstrates how an LLM can be instruction-tuned to fill

missing trajectory coordinates and predict future positions in a grid-based city map. Note that

in our case, we will leverage the power of the OpenAI API message object to achieve an effective

result with zero-shot prompts in real time, within the framework of the paper.

One important step in their methodology involves having (day, timeslot, x, y) records, with some

coordinates possibly missing (e.g., 999, 999) to indicate unknown positions.

The function that we will write, create_grid_with_trajectory(), essentially simulates a small-

er-scale version of this scenario by doing the following:

1.	 Generate a two-dimensional grid representing a city (default: 200×200).

2.	 Create random agent trajectories within the grid over a certain number of points.

3.	 Intentionally insert missing coordinates (marked as (999, 999)) to simulate real-world

data gaps.

4.	 Plot and save the trajectory visualization, highlighting direction with arrows and labels

for missing data.

This kind of synthetic generation is useful for testing or proof-of-concept demos, echoing the

spirit of the paper:

•	 You have grid-based data, like the 200×200 city model used in the article

•	 You inject missing values (999, 999), which the LLM or another model can later attempt

to fill in

Let’s now go through the trajectory simulation function step by step:

1.	 Let’s first initialize the function with its parameters:

def create_grid_with_trajectory(

 grid_size=200, num_points=50, missing_count=5

):

 grid = np.zeros((grid_size, grid_size), dtype=int)

 trajectory = []

The parameters are as follows:

•	 grid_size=200: The size of the grid along one axis (so the grid is 200×200)

•	 num_points=50: How many trajectory points (or steps) will be generated

Chapter 8 277

•	 missing_count=5: How many of those points will be deliberately turned into

missing coordinates (999, 999)

2.	 We now create the grid:

•	 grid = np.zeros((grid_size, grid_size), dtype=int) creates a two-dimen-

sional array of zeros (of the int type). Think of grid[x][y] as the status of that

cell, initially 0.

•	 trajectory = []: will hold tuples of the form (day, timeslot, x, y).

This mirrors the discretized city concept in the paper, where each (x, y) cell might repre-

sent a zone within the city.

3.	 We can now set the initial state of the agent:

 x = random.randint(0, grid_size - 1)

 y = random.randint(0, grid_size - 1)

 day = random.randint(1, 365)

 timeslot = random.randint(0, 47)

•	 Random start: The agent’s initial location (x, y) is chosen randomly anywhere

on the grid.

•	 Time setup: A random day between 1 and 365 and a random timeslot between 0

and 47 is selected, aligning with the paper’s time-slicing approach, where each

day is divided into multiple discrete time slots.

4.	 We now determine the movement directions and turn probability:

 directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]

 current_dir_index = random.randint(0, 3)

 turn_weights = {-1: 0.15, 0: 0.70, 1: 0.15}

This structure is a classical mobility agent framework:

•	 directions: Represents four possible directions—up, right, down, and left.

•	 current_dir_index: Picks which of the four directions the agent faces initially.

•	 turn_weights: Probability distribution dictating how likely the agent is to turn

left (-1), go straight (0), or turn right (1) at each step. In our case, there is a 15%

chance of turning left, a 70% chance of continuing, and a 15% chance of turning

right. This introduces randomness in how the agent moves and is a simple ap-

proximation of human or agent-like mobility patterns.

GenAISys for Trajectory Simulation and Prediction278

5.	 We are ready to generate the trajectory:

 for _ in range(num_points):

 turn = random.choices(list(turn_weights.keys()),

 weights=list(turn_weights.values()))[0]

 current_dir_index = (current_dir_index + turn) % \

 len(directions)

 dx, dy = directions[current_dir_index]

 new_x = x + dx

 new_y = y + dy

 ...

 trajectory.append((day, timeslot, x, y))

 grid[x, y] = 1

 timeslot = (timeslot + random.randint(1, 3)) % 48

Let’s go through the actions of our virtual agent:

•	 Choosing a turn: Based on turn_weights, the agent randomly decides whether

to continue in the same direction, turn left, or turn right.

•	 Updating the coordinates:

1.	 dx, dy are the increments along x and y for the chosen direction.

2.	 The new location, (new_x, new_y), is computed.

•	 Checking the boundary conditions: If (new_x, new_y) is outside [0, grid_size-

1], the code finds a valid direction or reverts to the old position to keep the agent

inside the grid.

•	 Recording the trajectory:

3.	 (day, timeslot, x, y) is appended to trajectory.

4.	 Mark grid[x, y] as 1, signifying a visited cell.

•	 Updating the time: timeslot = (timeslot + random.randint(1, 3)) % 48:

The timeslot jumps from 1 to 3 steps, staying in [0, 47].

6.	 We now need to introduce the missing data, which will be the basis for the generative

AI predictions:

 missing_indices = random.sample(range(len(trajectory)),

 min(missing_count,

 len(trajectory)))

Chapter 8 279

 for idx in missing_indices:

 d, t, _, _ = trajectory[idx]

 trajectory[idx] = (d, t, 999, 999)

The missing points are determined in two steps:

1.	 Selecting the missing points: Randomly choose missing_count points from the

total num_points of the trajectory.

2.	 Replacing the missing points with 999, 999: For each chosen index, replace the

valid (x, y) with 999, 999.

In the paper, the authors define 999, 999 as the signal for unknown or missing coordinates that

the LLM must later fill in. This code snippet simulates exactly that scenario—some coordinates

go missing, requiring an imputation or prediction step.

We want to add a visualization function next that will help the user to see the trajectory and its

missing points.

Visualizing the trajectory simulator
We will plot the grid and trajectory in Matplotlib:

 x_coords = [x if x != 999 else np.nan for _, _, x, y in trajectory]

 y_coords = [y if y != 999 else np.nan for _, _, x, y in trajectory]

 plt.figure(figsize=(8, 8))

 plt.plot(x_coords, y_coords, marker='o', linestyle='-',

 color='blue', label="Agent Trajectory")

 ...

 plt.quiver(...)

 ...

 plt.title("Agent Trajectory with Direction Arrows and Missing Data")

 plt.xlabel("X coordinate")

 plt.ylabel("Y coordinate")

 plt.grid(True)

 plt.legend()

 plt.savefig("mobility.png")

 plt.close()

GenAISys for Trajectory Simulation and Prediction280

Let’s go through the visualization process:

•	 Coordinates for plotting: Converts missing 999, 999 values into np.nan so that Matplotlib

will break the line and not connect them visually

•	 Plotting with colors, arrows, and text:

1.	 The trajectory line is drawn in blue.

2.	 Quiver arrows (plt.quiver) show the direction from each point to the next.

3.	 Missing data points are highlighted with an 'X' marker in magenta.

•	 Titles and axes: Labeling and legend for clarity

•	 Save and close: Saves the figure as mobility.png

Such plotting mirrors the style in the paper’s Case Study section (Section 4.4), where the authors

compare real versus predicted trajectories. Here, you’re simply illustrating the synthetic path as

well as the visual indications of missing data.

Output of the simulation function
The output of the function that we will process contains the grid and the trajectory:

 return grid, trajectory

These two variables will contain what our generative AI model needs to make a prediction:

•	 grid: A two-dimensional array marking the visited path

•	 trajectory: A list of (day, timeslot, x, y) tuples, with some replaced with 999, 999

This final result will be fed into an LLM-based approach (such as the one described in the paper)

with an OpenAI generative AI model that can produce an acceptable output in a zero-shot process.

We will now begin to process the trajectory simulation.

Creating the mobility orchestrator
The trajectory simulation has generated the grid, the trajectory, and the missing coordinates in

the trajectory. We will now develop the orchestrator function that integrates both the trajecto-

ry simulation and the predictive capabilities of the OpenAI model. We’ll call this orchestrator

handle_mobility_orchestrator().

This orchestrator aligns with the method outlined by Tang et al. (2024) in their paper Instruc-

tion-Tuning Llama-3-8B Excels in City-Scale Mobility Prediction. Its purpose is straightforward yet

powerful, performing three critical functions:

Chapter 8 281

•	 Generating synthetic mobility data: It invokes the create_grid_with_trajectory ()

function to simulate a trajectory with possible missing points

•	 Preparing data for an LLM call: It formats the new trajectory data into a JSON string,

appends it to the user’s message, and then calls the reasoning function—presumably

the LLM-based solution or orchestration logic (reason.mobility_agent_reasoning_

thread())

•	 Returning a structured response: It returns the final results clearly (reasoning_steps),

to include both the newly generated trajectory data and the LLM reasoning steps

This approach remains true to the Instruction-Tuning Llama-3-8B Excels in City-Scale Mobility Pre-

diction paper, where the authors emphasize creating structured input data—such as trajectories

with missing points—and then passing it to an LLM for completion or prediction.

Let’s now go through the orchestrator step by step:

1.	 First, the orchestrator function is initialized with the necessary parameters:

def handle_mobility_orchestrator(

 muser_message1, msystem_message_s1, mgeneration,

 mimcontent4, mimcontent4b

):

Immediately, it invokes the trajectory simulation function we built previously:

grid, trajectory = create_grid_with_trajectory(

 grid_size=200, num_points=50, missing_count=5

)

2.	 We now convert and process the trajectory in JSON:

trajectory_json = json.dumps({"trajectory": trajectory}, indent=2)

 #print("Trajectory Data (JSON):\n", trajectory_json)

 muser_message = f"{muser_message1}\n\nHere is the trajectory
data:\n{trajectory_json}"

This code takes care of converting the trajectory and augmenting the user message:

•	 Converting the trajectory to JSON:

1.	 trajectory_json becomes a serialized version of the data so it can be

embedded in text messages or API calls.

GenAISys for Trajectory Simulation and Prediction282

2.	 Under the hood, it’s just {"trajectory": [...list of (day, timeslot,

x, y)...]}.

•	 Augmenting the user message:

1.	 The function takes the original user message, (muser_message1), and

appends the newly generated trajectory data to it.

2.	 This ensures the model (or reasoning thread) sees the complete context—

both the user’s original query and the synthetic data—when generating pre-

dictions or completions.

This step closely mirrors the Q&A-style interaction presented by Tang et al. (2024), where

the trajectory data—marked clearly by placeholders (999, 999)—is delivered directly

to the model.

3.	 With the context clearly defined, the orchestrator calls the mobility reasoning function

(which we’ll build next):

 reasoning_steps = reason.mobility_agent_reasoning_thread(

 muser_message, msystem_message_s1, mgeneration,

 mimcontent4, mimcontent4b

)

Here’s what happens behind the scenes:

•	 reason.mobility_agent_reasoning_thread(...) processes the mobility pre-

diction logic through the selected LLM (such as GPT-4o)

•	 The provided arguments (msystem_message_s1, mgeneration, mimcontent4, and

mimcontent4b) represent clear instructions and specific context for the generative

AI model, guiding its reasoning and predictions

This mirrors the approach described in Tang et al.’s paper, where the model receives struc-

tured input data and is prompted to infer missing trajectories or forecast next movements.

4.	 Finally, the trajectory is added to the reasoning steps to provide a complete response:

 reasoning_steps.insert(

 0, ("Generated Trajectory Data:", trajectory)

)

 return reasoning_steps

Next, let’s develop the AI reasoning function that the handler registry will call upon.

Chapter 8 283

Preparing prediction instructions and the OpenAI function
In this section, we’ll develop the function that allows our GenAISys to process mobility-related

user messages. Specifically, we’ll implement a function named handle_mobility(user_message)

that integrates seamlessly into the AI functions of our GenAISys.

We’ll approach this task in two main parts:

1.	 Message preparation: Clearly structuring the messages that guide the generative AI model

2.	 Implementing these messages in the OpenAI API call: Leveraging the structured mes-

sages in the AI reasoning thread

This aligns closely with the trajectory completion methodology described in Instruction-Tuning

Llama-3-8B Excels in City-Scale Mobility Prediction, where structured prompts significantly en-

hance predictive accuracy.

Message preparation
We have four main message variables to send to the OpenAI function:

•	 msystem_message_s1: System message

•	 mgeneration: Generation message

•	 mimcontent4: Additional context

•	 muser_message1: User message

They each serve a distinct purpose in the final prompt that goes to the LLM (GPT-4o or similar)

for the prediction task. The system message will set the stage for the task.

System message
The system message sets the overall context and constraints for the LLM, ensuring the model

clearly understands its main objectives. The system message is stored in msystem_message_s1.

We first specify the role of the model:

msystem_message_s1 = """

You are GPT-4o, an expert in grid-based mobility analysis. Your task
is to analyze the provided trajectory dataset and **identify missing
coordinates** flagged as `999,999`, then predict their correct values.

GenAISys for Trajectory Simulation and Prediction284

Now, we clearly detail the tasks expected in explicit natural language:

Task:

1. **Process only the dataset provided in the user input. Do not generate
or use your own sample data.**

2. Identify **every single** instance where `x` or `y` is `999`, including
consecutive and scattered occurrences.

3. Predict the missing coordinate values based on the trajectory pattern.

4. **Do not modify, reorder, or filter the data in any way**—your response
must reflect the dataset exactly as given except for replacing missing
values.

5. Before responding, **validate your output** against the original
dataset to confirm completeness and accuracy.

6. Maintain the exact order of missing values as they appear in the
dataset.

7. Include a debugging step: **first print the list of detected missing
values before structuring the final JSON output**.

The output format is specified:

Output Format:

```json

{"predicted_coordinates": [[day, timeslot, x, y], ...]}

```

These instructions mirror the approach of the paper we are implementing—the system message

clarifies the role of the model and the task instructions, effectively reducing confusion or halluci-

nation. The paper shows how a well-structured instruction block significantly boosts accuracy.

Now, we can build the generation message.

Generation message
This secondary prompt provides generation instructions that will reinforce how the model should

handle the data:

mgeneration = """

Scan the user-provided trajectory data and extract **every** point where
either `x` or `y` equals `999`.

You must process only the given dataset and not generate new data.

Ensure that all missing values are explicitly listed in the output without
skipping consecutive values, isolated values, or any part of the dataset.
**Before responding, verify that all occurrences match the input data

Chapter 8 285

exactly.**

Then, predict the missing values based on detected trajectory movement
patterns. **Provide a corrected trajectory with inferred missing values.**

To assist debugging, **first print the detected missing values list as a
pre-response validation step**, then return the structured JSON output.

"""

This prompt focuses on scanning for missing values, ensuring none are skipped. Then, it addresses

the next step: provide the corrected trajectory with inferred missing values.

Additional context
To make sure we obtain what we wish, we will now add additional context. The role of this addi-

tional context is to supplement the system/generation messages with domain-specific context:

mimcontent4 = """

This dataset contains spatial-temporal trajectories where some coordinate
values are missing and represented as `999,999`. Your goal is to
**identify these missing coordinates from the user-provided dataset
only**, then predict their correct values based on movement patterns.
Ensure that consecutive, isolated, and scattered missing values are not
omitted. **Before generating the final response, validate your results and
confirm that every missing value is properly predicted.**

"""

This additional context further guides the generative AI model toward precise predictions. We

will now engineer a user message to further instruct the model.

User message
It’s time to emphasize the instructions further to make sure we provide even more context to

the input. The user message expresses the user’s explicit request. It references the actual dataset

with missing points. Realistically, in your code, you’ll append or embed the actual trajectory data

(with 999, 999 placeholders) before passing it to the generative AI model:

muser_message1 = """

Here is a dataset of trajectory points. Some entries have missing
coordinates represented by `999,999`.

You must process only this dataset and **strictly avoid generating your
own sample data**.

GenAISys for Trajectory Simulation and Prediction286

Please identify **all occurrences** of missing coordinates and return
their positions in JSON format, ensuring that no values are skipped,
omitted, or restructured. Then, **predict and replace** the missing values
using trajectory movement patterns.

Before returning the response, **first output the raw missing coordinates
detected** as a validation step, then structure them into the final JSON
output with predicted values.

"""

Let’s fit the message together.

Fitting the messages together
The four messages converge to direct the generative AI model:

•	 The system message (msystem_message_s1) sets the stage and enforces top-level policies

•	 The generation message (mgeneration) clarifies the approach for scanning, verifying,

and predicting

•	 The additional content (mimcontent4) ensures domain clarity

•	 Finally, the user’s message (muser_message1) includes the data that needs to be processed

(the partial or missing trajectory)

Together, they form the structure of a zero-shot advanced generative model’s prediction.

Now, let’s fit the message into the OpenAI API function. These messages are stored in commons/

cot_messages_c6.py to be imported by the OpenAI API function.

Implementing the messages into the OpenAI API function
We will now create an AI mobility function for the AI function section in our GenAISys when we

integrate it:

def handle_mobility(user_message):

We will now import the messages we stored in cot_messages_c6.py:

 from cot_messages_c6 import (

 msystem_message_s1, mgeneration, mimcontent4,muser_message1

)

We’ll now complete the function so that we can call it further in this program by plugging the

messages in the generative AI call and return the reasoning steps:

Chapter 8 287

 #call Generic Synthetic Trajectory Simulation and Predictive System

 reasoning_steps = handle_mobility_orchestrator(

 muser_message1, msystem_message_s1, mgeneration,

 mimcontent4, mimcontent4b

)

 return reasoning_steps

 mimcontent4b=mimcontent4

We can now call the mobility orchestrator and return its reasoning steps:

 #call Generic Synthetic Trajectory Simulation and Predictive System

 reasoning_steps = handle_mobility_orchestrator(

 muser_message1, msystem_message_s1, mgeneration,

 mimcontent4, mimcontent4b)

 return reasoning_steps

We then create the handle_mobility_orchestrator function in the reason.py library we have

been implementing in the previous chapters of this book. We first create the function:

Implemented in Chapter08

def mobility_agent_reasoning_thread(

 input1,msystem_message_s1,mumessage4,mimcontent4,mimcontent4b

):

Then, we initialize the reasoning steps to display them in VBox:

 steps = []

 # Display the VBox in the interface

 display(reasoning_output)

 #Step 1: Mobility agent

 steps.append("Process: the mobility agent is thinking\n")

 with reasoning_output:

 reasoning_output.clear_output(wait=True)

 print(steps[-1]) # Print the current step

GenAISys for Trajectory Simulation and Prediction288

We then plug the messages received into the standard make_openai_call that we have been using

in the previous chapters and return the steps:

 mugeneration=msystem_message_s1 + input1

 mrole4 = "system"

 mcontent4 = mimcontent4

 user_role = "user"

 create_response = make_openai_api_call(

 mugeneration,mrole4,mcontent4,user_role

)

 steps.append(f"Customer message: {create_response}")

 return steps

We are now ready to run the trajectory simulation and prediction.

Trajectory simulation, analysis, and prediction
With our mobility functions built and clearly defined, we can now run the complete trajectory

pipeline—generating synthetic trajectory data, identifying missing coordinates, and predicting

them with a zero-shot LLM. This section will demonstrate the end-to-end execution and inter-

pretation of results.

We’ll use a simple, generic prompt to initiate the mobility analysis:

user_message="Check the delivery path"

output=handle_mobility(user_message)

This triggers the entire pipeline we set up previously, from synthetic data generation to coordi-

nate predictions.

To clearly illustrate the trajectory and missing points, the system generates a visual plot (mobility.

png). We can display this image directly:

Display mobility.png if it exists and the "Mobility" instruction is
selected

if os.path.exists("mobility.png"):

 original_image = PILImage.open("mobility.png")

 display(original_image)

Chapter 8 289

The output contains the grid, the trajectory, and the missing data, as shown in Figure 8.3:

Figure 8.3: Trajectory and missing data

The output is plotted with colors, arrows, and text as designs:

•	 Green is the starting point

•	 The trajectory line is drawn in blue

•	 Quiver arrows (plt.quiver) in red show the direction from each point to the next

•	 Missing data points are highlighted with an x marker in magenta

GenAISys for Trajectory Simulation and Prediction290

Then, we print the raw output:

print(output)

The output displayed is a single, unstructured line containing trajectory data and predictions:

[('Generated Trajectory Data:', [(50, 28, 999, 999), (50, ….

Clearly, we need to present this data more intuitively. Let’s create a function to display a nice,

formatted response:

def transform_openai_output(output):

 """

 Takes the 'output' (a list/tuple returned by OpenAI) and transforms

 it into a nicely formatted multiline string.

 """

The code breaks the output into well-presented lines:

 …

 lines = []

 …

 # Join all lines into one neatly formatted string

 return "\n".join(lines)

We then call the function to obtain the formatted output:

pretty_response = transform_openai_output(output)

print(pretty_response)

The output contains the three-step process we built:

1.	 Display the trajectory.

2.	 Isolate the missing data.

3.	 Make predictions for the missing data.

The output first contains the trajectory:

Generated Trajectory Data:

 (228, 6, 999, 999)

 (228, 7, 69, 79)

 (228, 9, 70, 79)

 (228, 11, 71, 79)

Chapter 8 291

 (228, 13, 71, 78)

 (228, 16, 71, 77)

 (228, 18, 71, 76)

 (228, 21, 71, 75)

 (228, 24, 71, 74)

 (228, 26, 70, 74)

 (228, 27, 70, 73)

 (228, 29, 70, 72)

 (228, 32, 999, 999)

 …

Note the records with missing data containing 999 for x,y coordinates. Take the following example:

(228, 6, 999, 999)

The second step is the OpenAI GPT-4o thinking through the problem to isolate the missing data

and display it:

Process: the mobility agent is thinking

Customer message: **Detected Missing Coordinates:**

1. [228, 6, 999, 999]

2. [228, 32, 999, 999]

3. [228, 9, 999, 999]

4. [228, 45, 999, 999]

5. [228, 47, 999, 999]

The third step is for the OpenAI generative AI to predict the missing data:

Predicted Missing Coordinates:

The output is displayed and the predictions with explanations:

1. [228, 6, 69, 79] - Based on the trajectory pattern, the missing values
at timeslot 6 are likely to be the same as the next known values at
timeslot 7.

2. [228, 32, 69, 72] - Interpolating between timeslot 29 (70, 72) and
timeslot 33 (68, 72), the missing values at timeslot 32 are predicted to
be (69, 72).

3. [228, 9, 64, 72] - The missing values at timeslot 9 are interpolated
between timeslot 7 (64, 71) and timeslot 10 (64, 73), resulting in (64,
72).

4. [228, 45, 58, 81] - Interpolating between timeslot 43 (58, 82) and

GenAISys for Trajectory Simulation and Prediction292

timeslot 46 (58, 80), the missing values at timeslot 45 are predicted to
be (58, 81).

5. [228, 47, 58, 79] - The missing values at timeslot 47 are interpolated
between timeslot 46 (58, 80) and timeslot 1 (58, 78), resulting in (58,
79).

The output also contains the predictions in JSON:

```json

{

  "predicted_coordinates": [

    [228, 6, 69, 79],

    [228, 32, 69, 72],

    [228, 9, 64, 72],

    [228, 45, 58, 81],

    [228, 47, 58, 79]

  ]

}

```

The results are acceptable and show that recent generative AI models have zero-shot capabilities

to make predictions on missing data in sequences.

However, the real power lies in extending these predictions to a wide range of real-world applica-

tions. The next logical step is to integrate this functionality into our GenAISys interface, allowing

users to customize prompts easily to suit diverse trajectory-related use cases.

Let’s move forward to implement this user-friendly integration.

Adding mobility intelligence to the GenAISys
We will now integrate the trajectory simulation and prediction component into our GenAISys,

allowing users to design domain-specific prompts. At the user interface level, we’ll simplify the

terminology from “trajectory simulation and prediction” to the user-friendly term “mobility.”

This shorter label is more intuitive for users, though technical documentation can maintain

detailed terminology as required. Then it will be up to the users to decide what domain-specific

terminology they wish to see in the interface.

Chapter 8 293

We will add the mobility function we built in 1_Trajectory_simulation_and_prediction.ipynb

to the GenAISys at three levels, as shown in Figure 8.4:

1.	 IPython interface: Adding the mobility feature to the user interface

2.	 Handler selection mechanism: Adding the mobility handler to the handler registry

3.	 AI functions: Implementing the mobility feature in the AI functions library

Figure 8.4: Integrating the trajectory simulation and prediction pipeline into the GenAISys

 Open the 2_GenAISys_Mobility.ipynb notebook. If needed, review the handler

selection mechanism described in Chapter 7 before continuing here. The notebook

is not designed for voice outputs of lists of coordinates. As such, gTTS is best deac-

tivated by default with use_gtts = False at the top of the notebook.

GenAISys for Trajectory Simulation and Prediction294

Let’s first enhance the IPython interface.

IPython interface
The mobility option is primarily added to these parts of the IPython interface:

•	 To the instruct_selector dropdown with Mobility as one of its possible values

•	 To the display logic inside update_display(), which checks whether the user selected

Mobility and, if so, displays the mobility.png file

•	 To the handling logic in handle_submission(), where the code prints "Thinking..." if

instruct_selector.value is "Analysis", "Generation", or "Mobility"

•	 The mobility image (i.e., mobility.png) is only displayed when the Files widget is checked

We will begin by adding the option to the interface. We will create and add an option to instruct_

selector and then handle the trajectory image display and submission code. Let’s begin with

the option in the interface.

Creating the option in instruct_selector
We will first add the Mobility option to the Reasoning drop-down list, as illustrated in Figure 8.5:

instruct_selector = Dropdown(

 options=["None", "Analysis", "Generation","Mobility"],

 value="None",

 description='Reasoning:',

 layout=Layout(width='50%')

)

instruct_selector.observe(on_instruct_change, names='value')

Chapter 8 295

Figure 8.5: Adding Mobility to the dropdown

We can then select Mobility, as shown in Figure 8.6:

Figure 8.6: Selecting Mobility to activate the pipeline

Mobility is now selected. Notice the default model is set to OpenAI; however, you may extend

this to other models, such as DeepSeek, during later phases, depending on your project needs.

Let’s now handle the “mobility” value when we update the display.

GenAISys for Trajectory Simulation and Prediction296

Handling the “mobility” value in update_display()
We must ensure the generated trajectory visualization (mobility.png) is automatically shown

when the Mobility option is selected and the Files checkbox is enabled:

def update_display():

 clear_output(wait=True)

 ...

 # Display c_image.png if it exists

 if files_checkbox.value == True:

 …

 # Display mobility.png if "Mobility" is selected

 if (

 os.path.exists("mobility.png")

 and instruct_selector.value == "Mobility"

):

 original_image = PILImage.open("mobility.png")

 display(original_image)

The image created by the trajectory simulation will be displayed. We now need to enhance the

submission logic outputs to run the AI functions.

handle_submission() logic
The chat_with_gpt function is called as before but it interacts directly with the handler selection

mechanism (described in the next section):

The response = chat_with_gpt(

 user_histories[active_user], user_message, pfiles,

 active_instruct, models=selected_model

)

However, we will add the mobility functionality to the submission handling function:

def handle_submission():

 user_message = input_box.value.strip()

…

 if instruct_selector.value in [

 "Analysis", "Generation","Mobility"

Chapter 8 297

]:

 with reasoning_output:

 reasoning_output.clear_output(wait=True)

 …

We will now add the mobility function to the handler selection mechanism.

Handler selection mechanism
The handler selection mechanism contains two main parts. The first component, chat_with_gpt,

remains unchanged from previous chapters and is directly called by the IPython interface:

def chat_with_gpt(

 messages, user_message, files_status, active_instruct, models

):

The second component is the handler registry, to which we’ll now add the newly developed

mobility handler:

handlers = [

…

Mobility handler: determined by the instruct flag

 (

 lambda msg, instruct, mem, models, user_message, **kwargs:

 instruct == "Mobility",

 lambda msg, instruct, mem, models, user_message, **kwargs:

 handle_mobility(user_message, models=models)

),

…

This ensures that when users select Mobility from the Reasoning dropdown in the interface, the

appropriate handler is activated automatically. We can see that the handler selection mechanism

can be seamlessly scaled. Let’s now add the functions we developed for this mobility function

to the AI functions library.

GenAISys for Trajectory Simulation and Prediction298

AI functions
Next, we’ll integrate the trajectory simulation and prediction functions—previously developed in

the Building the trajectory simulation and prediction section—into the AI functions library within

the notebook:

def create_grid_with_trajectory(

 grid_size=200, num_points=50, missing_count=5

):

…

This function is added just above the beginning of the functions called by the handler selection

mechanism.

def handle_mobility_orchestrator(

 muser_message1, msystem_message_s1, mgeneration,

 mimcontent4, mimcontent4b

):

…

This function is also added just above the beginning of the functions called by the handler se-

lection mechanism.

We now add the handle_mobility function we developed as well, and add **kwargs to process

the arguments sent by the handler mechanism selection function:

def handle_mobility(user_message, **kwargs):

 from cot_messages_c6 import (

 msystem_message_s1, mgeneration, mimcontent4,muser_message1

)

 mimcontent4b=mimcontent4

 #call Generic Synthetic Trajectory Simulation and Predictive System

 reasoning_steps = handle_mobility_orchestrator(

 muser_message1, msystem_message_s1, mgeneration,

 mimcontent4, mimcontent4b

)

 return reasoning_steps

The code will run exactly like in the Building the trajectory simulation and prediction function section.

With this setup, the mobility functionality is fully integrated into the GenAISys ecosystem, ready

to be triggered via the intuitive IPython interface. Let’s now get the user involved.

Chapter 8 299

Running the mobility-enhanced GenAISys
In this section, we will demonstrate the mobility-enhanced GenAISys by running two distinct

scenarios—a delivery use case and a fire disaster scenario—to illustrate the versatility of trajectory

simulations and predictions, inspired by the work of Tang et al. (2024).

Open the 2_GenAISys_Mobility.ipynb notebook. First, deactivate DeepSeek in the initial setup

cell (you will only need a CPU):

deepseek=False

HF=False

Togetheragents=False

Then run the whole notebook. When it’s finished, go to the Running the interface section in the

notebook. We need to activate Agent, Files, and Mobility, and leave the default model as OpenAI.

Figure 8.7: Running a delivery check with the mobility function

GenAISys for Trajectory Simulation and Prediction300

Let’s first explore the mobility function with a delivery example.

Production-delivery verification scenario
To run the production-delivery verification, we simply need to activate Agent and Files, Mobil-

ity as the reasoning function, and OpenAI as the model. Then, click on SEND and let the AI do

the work. In this case, we can imagine that an online travel agency wants to deliver customized

goodies to its customers before a trip, such as a personalized travel bag with their name printed

on it, a tourist guide, and a discount booklet to visit museums.

The GenAISys will begin to think, as displayed at the bottom of the interface, as shown in Figure 8.8:

Figure 8.8: The GenAISys has begun to think

The output first displays the synthetic trajectory, which can come from any source, such as re-

al-time data, databases, and sensors. The synthetic trajectory, in this case, is displayed under

the user message that indicates the title of the discussion since the mobility function itself is

autonomous:

User01: Check deliveries

Agent: ('Generated Trajectory Data:', [(145, 20, 999, 999), (145, 22, 189,
125), (145, 25, 190, 125), (145, 28, 190, 124), (145, 29, 190, 123), (145,
31, 999, 999),

 The synthetic trajectory simulates real-world input data and generates new data

each time it runs. The explanations in this section reflect just one of these runs.

When you execute the program, you’ll obtain a new output every time, simulating

real-time data.

Limit: Currently, the trajectory file is overwritten whenever a new trajectory is

generated. If required, this functionality can be expanded during a project to save

multiple files instead.

Chapter 8 301

Then, the generative AI function takes over and indicates that it is processing the missing data

in the trajectory:

Process: The mobility agent is thinking

When it is finished thinking, it provides the list of missing data:

Customer message: Detected Missing Coordinates:

1. [145, 20, 999, 999]

2. [145, 31, 999, 999]

3. [145, 34, 999, 999]

4. [145, 42, 999, 999]

5. [145, 3, 999, 999]

The GenAISys then provides its prediction:

Predicted Missing Coordinates: To predict the missing coordinates, we will
analyze the trajectory pattern before and after each missing value:

Predicted Coordinates:

1. [145, 20, 189, 125] - Based on the pattern before and after the missing
value.

2. [145, 31, 189, 122] - Interpolated from the surrounding points.

3. [145, 34, 189, 121] - Interpolated from the surrounding points.

4. [145, 42, 191, 128] - Based on the pattern before and after the missing
value.

5. [145, 3, 190, 124] - Interpolated from the surrounding points.

A structured JSON output is provided for integration with other systems or further processing:

json
{
 "predicted_coordinates": [
 [145, 20, 189, 125],

[145, 31, 189, 122],
 [145, 34, 189, 121],
 [145, 42, 191, 128],

[145, 3, 190, 124]
]
}

GenAISys for Trajectory Simulation and Prediction302

The original trajectory is also displayed for the user to make decisions, as shown in Figure 8.9:

Figure 8.9: The original trajectory with missing data

Now, three subject-matter expert (SME) agents can intervene:

•	 Human user: A person evaluates the data, validates predictions, or provides feedback

•	 AI agent: An additional function can be added. The trajectory grid can be labeled, and

instructions can be provided to an AI function. The instructions will rely on the coordinate

sections of the grid to generate further functions or messages.

Chapter 8 303

•	 Hybrid (human-user + AI-agent): Once a human user has created a number of prompts

successfully, it may be beneficial to automate some of them to alleviate the human user’s

workload if accepted within the scope of the project.

Let’s now deactivate the Mobility function and Files display to put the cutting-edge generative

AI to work, as shown in Figure 8.10:

Figure 8.10: Generative AI takes over and generates messages

At this stage, a human user can interpret the AI’s output and craft a tailored prompt. For instance,

consider this scenario:

The missing x,y coordinates with 999,999 respectively in this dialog are
deliveries that were not made! The predicted x,y coordinates are inference
from the coordinates before and after.

Here’s an example of a domain-specific prompt to address the issue:

Write an email to SUPPLIER COMPANY specifying that the missing coordinates
from x values 20 to 40 are located in the Midtown mall area. Provide the
missing coordinates and their predictions to inform the SUPPLIER COMPANY.
Be as precise and explicit as possible.

As demonstrated, such a prompt could easily be adapted to various domains. By simply adjusting

the labeling of the coordinates and the intended recipient, you could generate a diverse array of

messages. The exact scope and application depend entirely on the requirements of your specific

project.

GenAISys for Trajectory Simulation and Prediction304

The generative AI’s response to the preceding prompt was acceptable and detailed:

Dear [Supplier Company Contact Name],

I hope this message finds you well. I am writing to inform you about
certain discrepancies identified in the delivery data for the Midtown
Mall area. Specifically, there are missing coordinates in the trajectory
data, which indicate deliveries that were not completed. These missing
coordinates are represented by the values 999,999.

Below, I have detailed the missing coordinates along with their predicted
values, which have been inferred based on the surrounding data points:

1. Missing Coordinate: [145, 20, 999, 999]

- Predicted Coordinate: [145, 20, 189, 125]

2. Missing Coordinate: [145, 31, 999, 999]

- Predicted Coordinate: [145, 31, 189, 122]

3. Missing Coordinate: [145, 34, 999, 999]

- Predicted Coordinate: [145, 34, 189, 121]

4. Missing Coordinate: [145, 42, 999, 999]

- Predicted Coordinate: [145, 42, 191, 128]

5. Missing Coordinate: [145, 3, 999, 999]

- Predicted Coordinate: [145, 3, 190, 124]

These missing deliveries occurred within the x-value range of 20 to 40,
specifically in the Midtown Mall area. The predicted coordinates have been
calculated by analyzing the trajectory data pattern before and after the
missing points.

We kindly request that you review this information and take the necessary
actions to address these unfulfilled deliveries. Your prompt attention to
this matter will help ensure that our delivery operations continue to run
smoothly and efficiently.

Please feel free to reach out if you require further details or

Chapter 8 305

clarification regarding this issue.

Thank you for your cooperation.

Best regards,

[Your Full Name]

[Your Position]

[Your Company Name]

[Your Contact Information]

Next, without restarting the session, let’s ask our GenAISys how this methodology could be

applied to a fire disaster scenario.

Fire disaster scenario
Now, let’s explore how the concepts of trajectory analysis, missing coordinates, and predicted

coordinates can be leveraged in disaster prediction scenarios, specifically in cases such as forest

fires. We’ll submit this scenario to the GenAISys and analyze its insights:

User01: How could the trajectory, missing coordinates, and predicted
coordinates be used for disaster prediction such as fires? Explain and
create an output for this use case.

Agent: Trajectory data, missing coordinates, and predicted coordinates
can be valuable tools in disaster prediction and management, such as for
fires, in the following ways:

1. Trajectory Analysis: By analyzing the movement patterns of vehicles,
drones, or other mobile units, authorities can identify areas that are
frequently visited or monitored. This can help in understanding the
normal patterns of activity and detecting anomalies that might indicate a
disaster, such as a sudden deviation from a typical route due to a fire.

2. Missing Coordinates: Missing data points can indicate areas where
monitoring or data collection was interrupted, possibly due to a disaster
like a fire. Identifying these gaps can help in pinpointing locations that
need immediate attention or further investigation.

3. Predicted Coordinates: By predicting the missing coordinates,

GenAISys for Trajectory Simulation and Prediction306

authorities can fill in the gaps in the data to maintain a continuous
monitoring system. This can help in reconstructing the events leading up
to a disaster and in planning the response by understanding the spread and
impact of the fire.

Use Case Output for Disaster Prediction (Fires)

Scenario: A fire has been reported in a forest area, and trajectory
data from drones monitoring the region is being analyzed to assess the
situation.

Output:

json
{
 "fire_prediction_analysis": {
 "trajectory_analysis":
"Drones deviated from their usual path at coordinates [145, 20] to [145,
40], indicating potential fire activity.",
 "missing_coordinates":
[
 {"missing_coordinate": [145, 25, 999, 999], "predicted_coordinate":
[145, 25, 190, 130]},
 {"missing_coordinate": [145, 30, 999, 999],
"predicted_coordinate": [145, 30, 191, 128]}
],
 "predicted_fire_
area": [
 {"coordinate": [145, 25, 190, 130]},
 {"coordinate": [145,
30, 191, 128]}
],
 "actionable_insights": "Immediate investigation
and firefighting efforts are recommended in the predicted fire area to
prevent further spread."
 }
}

This output provides a structured analysis of the situation, helping
disaster management teams to quickly identify and respond to potential
fire threats based on trajectory data and inferred information.

This structured output offers valuable insights, enabling disaster response teams to swiftly iden-

tify and respond to potential threats based on trajectory analysis, pinpointed data gaps, and

predictive coordinates.

This methodology demonstrates that we can craft numerous specialized prompts across domains.

Despite inevitable limitations, the era of GenAISys is just beginning, continually expanding into

new, uncharted applications.

Chapter 8 307

Summary
In this chapter, we began by recognizing that robust trajectory analysis is essential for appli-

cations ranging from deliveries and epidemic forecasting to city-scale planning. Guided by the

innovative approach outlined in Tang, P., Yang, C., Xing, T., Xu, X., Jiang, R., and Sezaki, K. (2024),

we emphasized the transformative potential of text-based LLMs for mobility prediction. Their

framework directed our design of a method capable of intelligently filling gaps in real-time syn-

thetic datasets through carefully structured prompts.

We then built a Python-based trajectory simulator that randomizes movement on a grid, mirroring

typical user paths. It assigns day and timeslot indices, which enabled us to capture the temporal

aspect of mobility. Critically, we inserted synthetic gaps marked as 999, 999, approximating

real-world data dropouts or missing logs. Next, we integrated an orchestrator function that adds

instructions with this synthetic data before directing them to an LLM, in this case, an OpenAI

GPT-4o model. The orchestrator composes prompts that accurately reflect the trajectory dataset,

focusing the model’s attention on flagged gaps. It employs a chain-of-thought routine, noting

missing points for debugging prior to generating final JSON outputs.

We then merged this pipeline into the GenAISys environment by adding a dedicated mobility

handler in the multihandler system. This handler streamlines the full process: trajectory gener-

ation, model inference, and visualization all in one place. Users can prompt the system to evalu-

ate missing coordinates and instantly see the updated paths superimposed on a static city grid.

Ultimately, we demonstrated that robust GenAISys forecasting need not remain abstract when

grounded in purposeful, prompt design.

In the next chapter, we will open the GenAISys to the world with an external service that will lead

us to enhance our system with security and moderation functionality.

Questions
1.	 A trajectory can only be a physical path in a city. (True or False)

2.	 Synthetic data can accelerate GenAISys simulation design (True or False)

3.	 Generative AI cannot go beyond natural language sequences. (True or False)

4.	 Only AI experts can run GenAISys. (True or False)

5.	 Generative AI can now help us with prompt design. (True or False)

6.	 Trajectory simulation and prediction cannot help with fire disasters. (True or False)

7.	 GenAISys’s potential is expanding at full speed and can be applied to a growing number

of domains and tasks. (True or False)

GenAISys for Trajectory Simulation and Prediction308

References
•	 P. Tang, C. Yang, T. Xing, X. Xu, R. Jiang, and K. Sezaki. 2024. “Instruction-Tuning Llama-

3-8B Excels in City-Scale Mobility Prediction.” arXiv, October 2024. https://arxiv.org/

abs/2410.23692.

•	 Renhe Jiang, Xuan Song, Zipei Fan, Tianqi Xia, Quanjun Chen, Satoshi Miyazawa, and

Ryosuke Shibasaki. 2018. “DeepUrbanMomentum: An Online Deep-Learning System for

Short-Term Urban Mobility Prediction.” Proceedings of the AAAI Conference on Artificial Intel-

ligence 32, no. 1: 784–791. https://ojs.aaai.org/index.php/AAAI/article/view/11338.

•	 Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin. 2018.

“DeepMove: Predicting Human Mobility with Attentional Recurrent Networks.” Proceed-

ings of the 2018 World Wide Web Conference, Lyon, France, April 23–27, 2018, 1459–1468.

https://doi.org/10.1145/3178876.3186058.

Further reading
•	 Haru Terashima, Naoki Tamura, Kazuyuki Shoji, Shin Katayama, Kenta Urano, Takuro

Yonezawa, and Nobuo Kawaguchi. 2023. “Human Mobility Prediction Challenge: Next

Location Prediction Using Spatiotemporal BERT.” Proceedings of the 1st International Work-

shop on the Human Mobility Prediction Challenge, Tokyo, Japan, September 18–21, 2023, 1–6.

https://dl.acm.org/doi/10.1145/3615894.3628498.

Subscribe for a Free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/TRO5B or scan the QR code below.

https://arxiv.org/abs/2410.23692
https://arxiv.org/abs/2410.23692
https://ojs.aaai.org/index.php/AAAI/article/view/11338
https://doi.org/10.1145/3178876.3186058
https://dl.acm.org/doi/10.1145/3615894.3628498
https://packt.link/TRO5B

9
Upgrading the GenAISys with
Data Security and Moderation
for Customer Service

In this chapter, we will open up our GenAISys by integrating it with real-world online services—

specifically, by connecting it to an online weather API. This will enable the fictional online trav-

el agency that we’ve been supporting throughout the book to access real-time weather data.

Weather reports for a specific location serve as an entry point for various tasks essential to the

agency’s operations, such as marketing initiatives, recommendations for tourist activities, and

coordinating product deliveries.

Connecting our GenAISys to external online resources transitions our system from a controlled

internal environment to the unpredictable realm of real-time data interactions. This transition,

however, introduces critical security concerns. Opening a system without adequate protections

can inadvertently expose sensitive data or cause security breaches, posing genuine risks both to

users and the organization itself. As such, robust security measures are a prerequisite before fully

integrating external services. Therefore, this chapter presents a threefold challenge: implement-

ing the weather service using the OpenWeather API, building a moderation system leveraging

OpenAI’s moderation capabilities, and developing a RAG-based data security function with Pine-

cone, which will detect and prevent sensitive-topic breaches. We will rely heavily on the flexible

and powerful handler selection mechanism of our existing GenAISys architecture to seamlessly

integrate these new functionalities. Our objective remains clear—minimal code enhancements

with maximum functional impact.

Upgrading the GenAISys with Data Security and Moderation for Customer Service310

The chapter begins by detailing how these additional components—moderation, data security,

and real-time weather—fit into the overall architecture of the GenAISys. Then, we’ll dive under

the surface to build the moderation function using OpenAI’s moderation endpoint. We will then

construct a RAG-powered data security module, using Pinecone, to proactively detect and filter

out sensitive or inappropriate inputs. By integrating these two security layers directly into the

GenAISys’s handler selection mechanism, we ensure comprehensive protection against unwanted

interactions.

With security firmly in place, we will then implement the OpenWeather API. This integration al-

lows us to retrieve live, real-time weather information to power a range of engaging, user-centric

tasks. Finally, we will demonstrate the capabilities of the enhanced GenAISys through practical,

multimodal, multi-user scenarios—such as generating weather-based activity recommendations,

crafting customized promotional images for travel merchandise, and dynamically creating person-

alized weather-aware messages for travelers. By the end of this chapter, you’ll be fully equipped

to adapt the core architecture and concepts we’ve explored in the GenAISys to real-world appli-

cations, confidently delivering a comprehensive, secure, and highly functional proof of concept.

This chapter covers the following topics:

•	 Enhancing the GenAISys

•	 Adding a security function to the handler selection mechanism

•	 Building the weather forecast component

•	 Running use cases in the GenAISys

Let’s start by clearly mapping out how the new moderation, data security, and weather functions

integrate into our GenAISys.

Enhancing the GenAISys
Integrating moderation, data security, and real-time weather functionalities into our GenAISys

will affect all three architectural layers, as illustrated in Figure 9.1. We will rely on the framework

built around our handler selection mechanism to make this three-level, three-function imple-

mentation seamless.

Chapter 9 311

Figure 9.1: Moderation, data security, and weather report integration

The implementation will impact all three layers as follows:

•	 Layer 1 (IPython interface): We’ll introduce a new Weather option within the Reasoning

drop-down menu of the IPython interface. Why place it here? Because in real-world proj-

ect settings, the weather report function could easily be expanded into a more complex,

multi-step chain-of-thought (CoT) pipeline, enabling the generation of sophisticated,

context-aware outputs based on weather conditions.

•	 Layer 2 (AI agent): The central orchestrator of our GenAISys, the handler selection mech-

anism, will now manage an additional component—the real-time weather forecasting

capability. More critically, we’ll enhance the handler with an integrated moderation and

data security mechanism that will function as an immediate kill switch, instantly termi-

nating the process and returning a security warning to the user when inappropriate or

sensitive content is detected.

Upgrading the GenAISys with Data Security and Moderation for Customer Service312

•	 Layer 3 (functions and agents): Three new key functions—moderation, data security, and

weather forecast retrieval—will be implemented at this level. The moderation and data

security checks will reside outside the handler registry since their roles are not optional.

As depicted in Figure 9.2, these two functions will form a mandatory global security barrier

directly controlled by the handler selection mechanism, protecting users and company

data before initiating any further tasks.

Figure 9.2: Security and moderation checks are directly managed within the handler selection
mechanism

This security system will proactively intercept and evaluate each user input, blocking further

processing and immediately alerting the user via the IPython interface if inappropriate or sen-

sitive content is detected.

While building and showcasing your GenAISys as a flexible proof of concept, remember to demon-

strate its scalability clearly. Highlight its potential for integration with additional AI functions,

further security features, or alternative generative models. However, exercise caution: avoid

prematurely adding functionalities without concrete project requirements, as this can lead to

unnecessary complexity or overdeveloping your project. The goal is to clearly show the project’s

potential without investing resources in unrequested developments.

With this strategic clarity in mind, we will begin by constructing the security function.

Adding a security function to the handler selection
mechanism
In this section, we will build the security function, the moderation function, and the data se-

curity function, as illustrated in Figure 9.3:

Chapter 9 313

Figure 9.3: The handler selection mechanism directly calls the security function

We’ll implement these functions as follows:

•	 The security function will call the moderation function

•	 The security function will also call the data security function

•	 The moderation function will contain subfunctions

•	 The data security function will ensure compliance with security standards

Let’s first build the security function along with its calls.

Implementing the security function
The security function is directly integrated with the handler selection mechanism, as illustrated

in Figure 9.4. It receives the user message directly, prior to any handler selection in the handler

registry. If the user message violates the GenAISys content policy, the security function returns

a False flag (indicating a content violation) to the IPython interface.

Figure 9.4: The security function is directly connected to the handler selection mechanism

Upgrading the GenAISys with Data Security and Moderation for Customer Service314

Open GenAISys_Customer_Service.ipynb and go to the Security section within the Chapter09

directory on GitHub (https://github.com/Denis2054/Building-Business-Ready-Generative-

AI-Systems/tree/main). We first create the function that sets the securitym flag to True, signi-

fying the content does not violate content policies. Also in this function, securityd=True shows

that no sensitive topic has been detected and that the message is data security-compliant:

def security(user_message):

 securitym=True # default value

 securityd=True # default value

The function begins by calling the moderation and content acceptability functions:

 response=moderation(user_message)

 # Moderation

 security = is_acceptable(user_message,response)

 #print(security) # Outputs: True if acceptable, False otherwise

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book.

Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
http://packtpub.com/unlock

Chapter 9 315

•	 moderation(user_message) invokes the OpenAI moderation API

•	 is_acceptable(user_message, response) processes the moderation response

•	 The debugging line (print(securitym)) can be uncommented during testing or trou-

bleshooting

Next, the security function calls the data security function, which checks for sensitive topics

within the user message:

 # Data security

 securityd = data_security(user_message)

 #print securityd

The securityd variable will store either True or False, depending on whether the message meets

the data security criteria.

The final part of the function evaluates both flags (securitym and securityd) and returns the

security status accordingly:

 if securitym==False or securityd==False:

 return False

 else:

 return True

Let’s now examine how the handler selection mechanism interacts with the IPython interface.

 If you prefer not to activate the moderation or data security checks, you can

comment out the relevant lines in the security function—specifically, the code

between the assignments of securitym=True and securityd=True, and the if

securitym==False or securityd==False conditional statement. This way, the

function defaults to always returning True.

Upgrading the GenAISys with Data Security and Moderation for Customer Service316

Handler selection mechanism interactions
The handler selection mechanism and IPython interface interact closely, as shown in Figure 9.5.

When the IPython interface sends a user message to the handler selection mechanism, it deter-

mines whether the message complies with security policies.

Figure 9.5: Handler selection mechanism and IPython interactions

The primary structure of the handler selection mechanism function remains unchanged from

previous chapters:

def chat_with_gpt(

 messages, user_message, files_status, active_instruct, models

):

 global memory_enabled # Ensure memory is used if set globally

However, at the start of this function, we now call the security function. It returns a security status

(True for compliant or False for non-compliant):

 try:

 if not security(user_message):

 return "Your message could not be processed as it may violate
our security guidelines."d

If the message is flagged as non-compliant, a clear message will be immediately returned to the

user interface. We will test security function examples thoroughly in the Running security checks

section later. Before that, let’s move forward by implementing the moderation function.

Chapter 9 317

Implementing the moderation function
We will use OpenAI Omni, which has a comprehensive range of categorization options, as the

moderation model: https://platform.openai.com/docs/guides/moderation.

Open the GenAISys_Customer_Service.ipynb notebook and navigate to the Moderation subsec-

tion within the Security section. The moderation function will be directly invoked by the handler

selection mechanism, as illustrated in Figure 9.6. It classifies user messages and provides details

about any inappropriate content flagged during processing.

Figure 9.6: Calling the moderation function

We will implement the moderation function with OpenAI Omni as follows:

from openai import OpenAI

client = OpenAI()

def moderation(user_message):

 response = client.moderations.create(

 model="omni-moderation-latest",

 input=user_message,

)

 return response

https://platform.openai.com/docs/guides/moderation

Upgrading the GenAISys with Data Security and Moderation for Customer Service318

This function processes the user message and returns a moderation response. Once received by the

security function, the response is sent to another function, is_acceptable, to evaluate whether

the message is acceptable or not:

def is_acceptable(user_message, response):

 # Extract the 'flagged' status from the first result

 flagged = response.results[0].flagged

The response contains response.results[0].flagged, which provides a True value if the content

is flagged or a False status if the response is acceptable. If the content is flagged, the details of

the response will be saved in a timestamped JSON file:

 if flagged:

 # Generate filename based on current date and time

 timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")

 sanitized_message = ''.join(

 e for e in user_message if e.isalnum()

 or e in (' ', '_')

).strip()

 filename = \

 f"{sanitized_message[:50].replace(' ', '_')}_{timestamp}.json"

 # Ensure the 'logs' directory exists

 os.makedirs('logs', exist_ok=True)

 # Convert the response to a dictionary

 response_dict = response.model_dump()

 # Write the response to a JSON file in the 'logs' directory

 with open(os.path.join('logs', filename), 'w') as file:

 json.dump(response_dict, file, indent=4)

Finally, the function returns the flagged status as not_flagged:

 # Return True if content is acceptable, False otherwise

 return not_flagged

Chapter 9 319

If the message is flagged, details are saved in a timestamped JSON file located within the /logs

subdirectory. The resulting JSON file contains a unique ID, the model used, and the status of a

wide range of categories:

{

 "id": "modr-bb021ae067c296c1985fca7ccfd9ccf9",

 "model": "omni-moderation-latest",

 "results": [

 {

 "categories": {

 "harassment": true,

 "harassment_threatening": false,

 "hate": false,

 "hate_threatening": false,

 "illicit": false,

 "illicit_violent": false,

 "self_harm": false,

 "self_harm_instructions": false,

 "self_harm_intent": false,

 "sexual": false,

 "sexual_minors": false,

 "violence": false,

 "violence_graphic": false,

 "harassment/threatening": false,

 "hate/threatening": false,

 "illicit/violent": false,

 "self-harm/intent": false,

 "self-harm/instructions": false,

 "self-harm": false,

 "sexual/minors": false,

 "violence/graphic": false

 },

Upgrading the GenAISys with Data Security and Moderation for Customer Service320

 "category_applied_input_types": {

 "harassment": [

 "text"

],

 "harassment_threatening": [

 "text"

],…

In this case, the harassment category has been flagged, for example. The file also contains a score

for each category, as shown in this excerpt from the file:

 "category_scores": {

 "harassment": 0.8075929522141405,

 …

 },

 "flagged": true

 …

To perform a quick quality control check or evaluate specific user messages manually, uncomment

and use the following lines in your notebook:

Uncomment to use as security user message evaluation

user_message="Your ideas are always foolish and contribute nothing to our
discussions."

security(user_message)

The file containing the information can be processed further with other functions as required for

your project. We could add the user to the file. We can also view the details of the dialogue to find

which user entered the flagged message in the Load and display the conversation history section

of the notebook. We will go through these features in the Running security checks section later.

Let’s now build the data security function.

Chapter 9 321

Building the data security function
We will now build a data security function designed to detect whether a user message contains

sensitive topics. This function covers a wide spectrum of security-related concerns, from safe-

guarding confidential information to preventing inappropriate or sensitive discussions through

the GenAISys interface. The data security function comprises two components, as shown in

Figure 9.7: the first component populates a Pinecone index with sensitive topics, and the second

component queries this index to detect sensitive topics within user messages.

Figure 9.7: The two components of the data security function

Populating the Pinecone index
We will first populate the Pinecone index with sensitive topics. Open Pinecone_Security.ipynb.

This notebook mirrors the structure of the earlier notebook from Chapter 3 (Chapter03/Pinecone_

instruction_scenarios.ipynb). We will simply adapt it here to accommodate sensitive topics.

Feel free to revisit Pinecone_instruction_scenarios.ipynb for a detailed refresher if needed.

We’ll briefly cover the code sections specifically adapted for this domain. The first step involves

downloading our sensitive_topics dataset:

download("Chapter09","sensitive_topics.csv")

Upgrading the GenAISys with Data Security and Moderation for Customer Service322

The file, sensitive_topics.csv, contains 100 sensitive topics structured as follows:

•	 id: A unique identifier ranging from 1000 to 1099

•	 values: Text descriptions of sensitive topics

For example, the first topic is as follows:

Discussing the mismanagement of client funds that has resulted in
significant financial discrepancies which have raised concerns among
regulatory bodies and could lead to potential legal actions being taken
against the travel agency if corrective measures are not implemented
promptly and with strict accountability this issue demands immediate
thorough review.

If a user message contains content similar to this topic, for example, it will be flagged. Vector-based

similarity searches provide more nuanced detection than traditional methods.

The next step is to chunk the data from the sensitive_topics.csv file:

import time

start_time = time.time() # Start timing

File path

file_path = 'sensitive_topics.csv'

Read the file, skip the header, and clean the lines

chunks = []

…

We then create a namespace within Pinecone to hold this sensitive data. We will call this name-

space security:

from pinecone import ServerlessSpec

index_name = 'genai-v1'

namespace="security"

cloud = os.environ.get('PINECONE_CLOUD') or 'aws'

region = os.environ.get('PINECONE_REGION') or 'us-east-1'

spec = ServerlessSpec(cloud=cloud, region=region)

The upserting function remains unchanged, retaining the same column names as in the .csv file:

def upsert_to_pinecone(batch, batch_size, namespace="security"):

 …

With the data now populated in Pinecone, we’ll proceed to implement the query component.

Chapter 9 323

Querying the Pinecone index
Open GenAISys_Customer_Service.ipynb and navigate to the Data security subsection in the

Security section. The goal here is to determine whether a user message matches any sensitive

topics stored in the Pinecone security index. If a match is found, the message will be flagged.

Initially, we set default security indicators:

Define data security function

import datetime

def data_security(user_message):

 sec = True # Initialize to True (safe by default)

 target_id = 0

 score = None # Initialize score

 security_level = 0.30 # Set your desired security threshold here (as a
float, e.g., 0.0 to 1.0)

The default value, sec, is set to True, meaning that the user message is secure until found other-

wise. Additionally, target_id is set to 0 to show that no record in the Pinecone index has been

found yet. Additionally, we have a security level threshold, security_level, that can be set to

the value deemed necessary in production. You can modify it here in the code or create a security

interface once your strategy has been decided with your team. In this case, security_level is set

to 0.30 to avoid filtering low-level security items in this educational example.

We then define our namespace for querying:

 namespace = "security"

 print(namespace)

We then query the Pinecone index to detect sensitive topics:

 query_text = user_message

 query_results = get_query_results(query_text, namespace)

We now extract the score, which we will use as our security level threshold:

Extract score directly from query_results BEFORE calling display_results

 if (

 query_results

 and "matches" in query_results

 and query_results["matches"]

Upgrading the GenAISys with Data Security and Moderation for Customer Service324

):

 score = query_results['matches'][0]['score']

 print(f"Extracted Score: {score}") # Optional: print to verify

Now, we can display the results:

 print("Processed query results:")

 qtext, target_id = display_results(query_results)

 print(qtext)

If a similar sensitive topic is found (indicated by a score that exceeds the threshold), we have a

security logic process:

--- LOGIC FOR SECURITY CHECK ---

 # Determine 'sec' based on score first, if a score is available.

 if score is not None:

 if score > security_level:

 sec = False # Breach detected: Score is above threshold

 print(f"Security flag triggered: Score ({score}) exceeds
threshold ({security_level}).")

 else:

 sec = True # No breach: Score is below or equal to threshold

 print(f"Score ({score}) is below or equal to threshold
({security_level}). Not a score-based breach.")

 else:

 # If no score is available (e.g., no match found), then use
target_id as a fallback.

 if target_id is not None and int(target_id) > 0:

 sec = False # Breach detected: Target ID is positive
(fallback)

 print(f"Security flag triggered: Target ID ({target_id}) is
greater than 0 (fallback check).")

 else:

 sec = True # No breach detected by target_id fallback

 # --- END SECURITY CHECK LOGIC -

Chapter 9 325

The query results are tracked and the details are recorded:

 # Create a filename with the prefix "security_breach" and current
datetime (format: YYYYMMDD_HHMMSS)

 if not sec: # Only log if a security breach is detected

 now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")

 filename = f"security_breach_{now}.txt"

 # Include score and threshold in the log for context

 log_content = f"Security Breach Detected!\nUser Message: {user_
message}\nMatched Text: {qtext}\nTarget ID: {target_id}\nScore: {score}\
nThreshold: {security_level}"

 with open(filename, "w") as file:

 file.write(log_content)

 print(f"Security breach logged to {filename}")

 else:

 print("No security breach detected.")

The result, True (non-sensitive) or False (sensitive), is returned to the security function:

return sec

To manually evaluate messages, you can uncomment the following code snippet:

#Uncomment for security message evaluations

'''

user_message="Some client funds were mismanaged"

response=data_security(user_message)

print(response)

'''

Let’s now run security checks for moderation and sensitive data classification.

Running security checks
We’ll perform two security evaluations: one for moderation (harassment) and another for sen-

sitive data. Let’s first begin with a moderation user message.

Upgrading the GenAISys with Data Security and Moderation for Customer Service326

Consider a user message that contains harassment content, as shown here:

Figure 9.8: A harassing message

The moderation function detects the inappropriate content:

User01: Your ideas are always foolish and contribute nothing to our
discussions

Agent: Your message could not be processed as it may violate our security
guidelines.

A JSON file containing the flagged message is created in the /logs directory:

/content/logs/Your_ideas_are_always_foolish_and_contribute_
nothi_20250306213022.json

The file contains the moderation categories and has flagged the user message as harassment:

{

 "id": "modr-5ef1eeaaa3256a7c45feaa17396f11fd",

 "model": "omni-moderation-latest",

 "results": [

 {

 "categories": {

 "harassment": true,

The probability is also logged:

…

 "category_scores": {

 "harassment": 0.8054343118110135,

Chapter 9 327

We now have a data security function. When we run a security check for a sensitive topic, such

as referring to mismanaged client funds, the output confirms the detection of a sensitive topic:

User01: Some client funds were mismanaged and used in a case of
intellectual property violations.

Agent: Your message could not be processed as it may violate our security
guidelines.

A file containing the flagged message is created :

/content/security_breach_20250306_213240.txt

This file contains a record of the flagged message in the Pinecone index:

1063, Discussing disputes over intellectual property in travel brochure
designs which have led to accusations of copyright infringement potential
lawsuits and significant reputational damage to the travel agency thereby
necessitating an immediate review of all creative materials and strict
adherence to intellectual property laws with immediate legal consultation
and review now.

Both moderation and sensitive data checks have created detailed records. These logs can be fur-

ther expanded with user profiles or additional data as your project needs evolve. Additionally, the

GenAISys stores full dialogue histories (conversation_history.json) and summarizations for

future reference and auditing. The conversation history is activated when we enter exit:

Conversation ended. Saving history...

Conversation history saved to conversation_history.json.

History saved. Proceed to the next cell.

The Load and display the conversation history outputs contain the log of the conversation with the

usernames and security flags:

User01:..

Your ideas are always foolish and contribute nothing to our discussions…

assistant…

Your message could not be processed as it may violate our security
guidelines.

…

Some client funds were mismanaged and used in a case of intellectual
property violations.

Upgrading the GenAISys with Data Security and Moderation for Customer Service328

assistant…

Your message could not be processed as it may violate our security
guidelines….

The raw log of the conversation is saved in /content/conversation_history.json for further

use. The Load and summarize the conversation history section contains a summary of the dialogue,

which includes the username, user messages, and assistant’s responses:

List of Actions:

1. User01's First Message:

- Action: User01 criticized the quality of ideas in discussions.

- Assistant's Response: The message was blocked due to potential security
guideline violations.

2. User01's Second Message:

- Action: User01 reported an issue regarding the mismanagement of client
funds.

- Assistant's Response: The message was again blocked for potential
security guideline violations.

With these core functionalities in place, our system’s moderation and security measures can be

easily adapted or expanded to meet your project-specific requirements. We’re now ready to move

forward by integrating an external weather forecast component.

Building a weather forecast component
In this section, we’ll cautiously open up the GenAISys by integrating a weather forecast library

and building a dedicated weather forecast function using an external API. This integration allows

our GenAISys to interact directly with real-time weather information, providing a pathway to

more controlled interactions with external web services. After successfully implementing this

functionality, the GenAISys could be authorized to interact with other websites as needed.

We’ll implement real-time weather forecasts for specific locations (cities in this case) to support

marketing, production planning, deliveries, and customer service, as illustrated in the upcoming

Running the GenAISys section.

Open the GenAISys_Customer_Service.ipynb notebook. The notebook uses the OpenWeather API,

available at https://home.openweathermap.org/. OpenWeather provides a wide range of weather

forecasting services, but we will focus specifically on real-time forecasts suitable for our use case.

https://home.openweathermap.org/

Chapter 9 329

To use the OpenWeather API, sign up for an account, obtain your API key, and carefully review

their pricing plans at https://openweathermap.org/price. At the time of writing, the API calls

required for our examples are available under their free tier, subject to request limits. Please

confirm the cost and limits before proceeding.

We will seamlessly integrate our weather forecast function into the GenAISys framework using

the handler selection mechanism, as depicted in Figure 9.9:

Figure 9.9: Integrating a weather forecast API in the GenAISys framework

Once we set the OpenWeather environment up, we will integrate the weather forecast function

seamlessly with the handler selection mechanism framework:

1.	 IPython interface: Add a Weather forecast option to the interface.

2.	 Handler selection mechanism: No change.

3.	 Handler registry: Include a dedicated weather forecast handler.

4.	 AI functions: Develop a specific weather forecast function.

Let’s first set up the OpenWeather environment.

Setting up the OpenWeather environment
In GenAISys_Customer_Service.ipynb, go to the Weather subsection under the Setting up the

environment section.

First, download the script for retrieving your OpenWeather API key from Google Secrets:

download("commons","weather_setup.py")

https://openweathermap.org/price

Upgrading the GenAISys with Data Security and Moderation for Customer Service330

The notebook then runs the API key initialization function:

google_secrets=True

if google_secrets==True:

 import weather_setup

 weather_setup.initialize_weather_api()

Then, initialize the API key using this function:

import requests

import os # Make sure to import os to access environment variables

Fetch the API key from environment variables

api_key = os.environ.get('Weather_Key')

if not api_key:

 raise ValueError("API Key is not set. Please check your
initialization.")

You can also set the API key with another method, depending on the environment you are running

the notebook in. We begin by double-checking that api_key is set:

def weather_location(city_name):

 # Fetch the API key from environment variables

 api_key = os.environ.get('Weather_Key')

This double-check is not obligatory; it just ensures that the code is robust if the session is inter-

rupted by micro web interruptions, for example. Feel free to remove the redundant check if your

environment is stable.

The OpenWeather call is remarkably simple. It requires only your API key and the city name:

OpenWeatherMap API URL for city name

url = f"https://api.openweathermap.org/data/2.5/weather?q={city_
name}&units=metric&appid={api_key}"

Note that metric is a specific keyword defined by the OpenWeatherMap API, mean-

ing degrees Celsius (C), and also provides the wind speed in meters per second (m/s).

If you want US customary units, change metric to imperial, &units=imperial, and

you will obtain degrees Fahrenheit (°F) and windspeed in miles per hour (mph).

Chapter 9 331

We now just have to make the request and retrieve the response:

 # Fetch real-time weather data

 response = requests.get(url)

 weather_data = response.json()

We will now extract and return the real-time weather information we need for our use case. We

will use the current temperature, a brief weather description, and the wind speed:

Extract relevant data

 current_temp = weather_data['main']['temp']

 current_weather_desc = weather_data['weather'][0]['description']

 wind_speed = weather_data['wind']['speed']

 return current_temp, current_weather_desc, wind_speed

When the API receives a request with just a city name (q={city_name}), it uses an internal algo-

rithm to determine the most likely intended location. This algorithm prioritizes several factors:

•	 Population: Larger, more populous cities are often ranked higher

•	 Significance: Capital cities and major cultural or economic hubs are given preference

•	 Internal Ranking: OpenWeatherMap maintains its own database and ranking system

for locations

Because Paris, France, is a major global capital with a significantly larger population and inter-

national recognition than Paris, Texas, the API defaults to the French capital.

Since we are building an educational example using major tourist locations, such as Paris, the

algorithm easily defaults to Paris, France. If needed in production, you could modify the function

to include the country and country code, as in the following example:

def weather_location(city_name, state_code="", country_code=""):

…

query = city_name if state_code: query += f",{state_code}"

 if country_code: query += f",{country_code}"

 Note that we only provided the name of the city, not the country. The OpenWeath-

erMap API has a smart system for handling requests for cities with the same name

in different locations. When it searches for “Paris,” it defaults to the most prominent

and well-known location, which is Paris, France.

Upgrading the GenAISys with Data Security and Moderation for Customer Service332

The information that we are returning is sufficient for a generative AI model to interpret the

real-time weather forecast and make decisions based on it. With that, we are now ready to add

a weather forecast option to the IPython interface.

Adding a weather widget to the interface
We will now add a Weather option to the instruction drop-down list as shown in Figure 9.10.

Why add a weather forecast option to a reasoning list? The motivation comes from the fact that

we are building a GenAISys proof of concept. We could imagine several CoT scenarios based on

the use cases we will run in our GenAISys. However, if we write these pipelines before having

workshops with the end users, they might find the system too rigid.

Figure 9.10: Add a weather forecast option to the IPython interface

The best approach is to have some CoT and pipeline scenarios to demonstrate the capabilities

of the GenAISys, but leave room for flexibility until the users suggest that we automate some of

the CoT scenarios they performed while running the GenAISys.

Chapter 9 333

We will thus add the option to the IPython interface, in instruct_selector, leaving the way it

is used open to discussion:

Dropdown for reasoning type

instruct_selector = Dropdown(

 options=["None", "Analysis", "Generation","Mobility","Weather"],

 value="None",

 description='Reasoning:',

 layout=Layout(width='50%')

)

When running forecasts, users select Weather and simply enter a city name. Although adding

a city selector or location autocomplete could improve the user experience, a simple text input

is more practical for this real-time use case, especially since tourists typically know their exact

destination names.

That is all we need at Layer 1 in the IPython interface. The handler selection mechanism remains

unchanged, so we move directly on to the handler registry.

Adding a handle to the handler registry
The weather handler in our registry only requires a one-word location in the user message and

the "Weather" instruction in this implementation of OpenWeather:

Weather handler: determined by the instruct flag

 (

 lambda msg, instruct, mem, models, user_message,

 **kwargs: instruct == "Weather",

 lambda msg, instruct, mem, models, user_message,

 **kwargs: handle_weather(

 user_message, models=models)

),

Why not use keywords? Using "weather" as a keyword instead of an instruction could be confused

with a follow-up question in the following context, as follows:

•	 User 1 could ask: What is the weather in Paris? The assistant would answer: 20°C,

clear skies, 5m/s wind speed.

•	 User 2 could ask: What can I visit in this weather? In this case, weather could trigger

an API weather call that would fail because no location is provided.

Upgrading the GenAISys with Data Security and Moderation for Customer Service334

At the time of writing this chapter, even ChatGPT Plus has options before submitting a request,

as follows:

•	 The choice between multiple models such as GPT-4o for general purpose tasks, DALL-E

for images, o1-mini for reasoning, o3-mini for high reasoning, GPT-4.5, and more

•	 A button to activate web search and another one for Deep Research

•	 Manual file uploads

These multiple interactive choices make the interface flexible. However, as we work on user inter-

faces, we will see a progressive automation of many of these options, along with new generative

AI models that encompass the functionality of several former models. It’s an ongoing accelerated

generative AI evolution!

We will now add the weather function to the AI functions library.

Adding the weather forecast function to AI functions
The real-time weather forecast function first checks whether api_key is still active during the

session. This additional check ensures that the API call remains stable with no disconnection if

there is a micro-interruption of the session in the VM we are using:

def handle_weather(user_message, **kwargs):

 # Fetch the API key from environment variables

 api_key = os.environ.get('Weather_Key')

 if not api_key:

 raise ValueError("API Key is not set. Please check your
initialization.")

The city name is the user message; the weather forecast will be requested; and the temperature,

description, and wind speed will be returned:

 city_name = user_message

 current_temp, current_weather_desc, wind_speed = \

 weather_location(city_name)

 return f"Current Temperature in {city_name}: {current_temp}°C\
nWeather: {current_weather_desc}\nWind Speed: {wind_speed} m/s"

We could add a keyword search to a longer user message.

Chapter 9 335

At this stage, the constraint is that the user message must only contain the city’s name. However,

the functionality can be expanded in various ways based on user feedback gathered during project

workshops, such as the following:

•	 Scan a user message for the location if the weather option is activated.

Limitation: Only the name of the city is necessary.

•	 Have a drop-down list of all the possible city locations.

Limitation: The list could contain hundreds of cities.

•	 Have a country selection list, then choose a region (or administrative name for a region),

then choose the city.

Limitation: A customer might not know the name of the region or state. Also, this takes

longer than just entering the city.

•	 Automatically detect where the customer is.

Limitation: The query might be for another city and not the one the customer is in.

•	 Just enter the city and nothing else, as we are doing now.

Limitation: We might need to enhance the function with a city keyword search just in

case the user enters more words than just the name of the city. Also, the customer might

misspell the name of the location.

As you can see, there are several ways to implement the real-time weather forecast request at the

user level. The best approach is to initially showcase the basic capabilities of the system clearly

and then adapt and extend the interface based on the feedback you receive from workshops with

a customer panel.

Now that we’ve built and integrated the weather forecast functionality into the handler selection

mechanism framework, we’re ready to demonstrate real-world use cases within the GenAISys.

Running the GenAISys
In this section, we will run multi-user, cross-domain, multimodal interactions using the GenAISys

for real-time tourism-related services. Typically, when tourists visit a city, they check weather

forecasts in one app and decide on their activities in another. Here, we’re merging these domains

into one seamless experience. Users will request real-time weather forecasts, and the GenAISys

will suggest suitable activities—indoor, outdoor, or both—based on the current weather condi-

Upgrading the GenAISys with Data Security and Moderation for Customer Service336

tions. This integrated, cross-domain approach can be extended beyond tourism into areas such as

construction planning, delivery scheduling, and nearly any scenario where multiple applications

are traditionally needed to support user decisions.

The main objective of this section is to demonstrate the cross-domain capabilities of the GenAISys

in a flexible manner, illustrating how the system can adapt to various domain-specific scenarios.

Specifically, we will focus on the following:

•	 Activating and deactivating the weather forecast functionality

•	 Activating and deactivating the file display option

We aim to present a clear and practical proof of concept, highlighting potential workflows before

automation decisions are finalized in user workshops. By not prematurely automating too many

scenarios, the GenAISys maintains flexibility, allowing actual users first to experiment freely and

determine which features should be automated. Remember, the more automation you introduce,

the less flexibility you retain in user interactions—though, with careful planning, it is possible

to balance both automation and interactivity.

As emphasized earlier, an effective strategy begins with supporting interactive, manual workflows,

then progressively automating some or all tasks as users gain familiarity and provide feedback.

Time is not the objective; user maturity is. Interactive scenarios can transition into fully automated

pipelines or CoT processes at the users’ pace. By letting user feedback shape development, adop-

tion rates naturally improve.

At the beginning of the notebook (GenAISys_Customer_Service.ipynb), you have the option to

activate or deactivate the DeepSeek model:

DeepSeek activation deepseek=True to activate. 20 Go (estimate) GPU
memory and 30-40 Go Disk Space

deepseek=False

 Generative AI systems rely on probabilistic responses, meaning outputs can vary

slightly with each run. This stochastic behavior ensures responses remain dynamic

rather than rigid or repetitive.

Chapter 9 337

For this chapter, deepseek is set to False, and we will rely on OpenAI for running our use cases.

With all necessary functions ready for weather-based decision-making, let’s now explore inter-

active use cases in the GenAISys.

A multi-user, cross-domain, and multimodal dialogue
We’ll run an interactive scenario with the GenAISys, simulating a tourist seeking real-time, weath-

er-based recommendations in a specific city—whether the weather is cloudy with possible rain

or clear. The GenAISys must thus adapt its suggestions to real-time weather forecasts in that

specific location.

The dialogue will be multi-user between the following users:

•	 User01: A tourist who expects weather-dependent suggestions on what to do

•	 User02: A customer service agent who provides support

•	 User03: A decision-maker who coordinates marketing, product design, production, de-

liveries, and customer service

Each interaction in this dialogue is clearly labeled, indicating the user initiating the request. If a

new session starts, it will be prefixed by New Session.

The interface actions will be as follows:

•	 Writing and submitting a prompt

•	 Activating or deactivating the weather forecast function

•	 Activating or deactivating file displays

There are many enhancements, improvements, additional functions, CoT processes, and pipe-

lines we could add to expand our GenAISys. However, this should be done in collaboration with

a customer/user panel.

Let’s start the dialogue in Paris.

User01: Paris

Upgrading the GenAISys with Data Security and Moderation for Customer Service338

The customer activated the Weather function and entered Paris, knowing that in this proof of

concept, those are the instructions to follow, as shown here:

Figure 9.11: Asking for a real-time weather forecast

The GenAISys agent provides the requested information:

Agent: Current Temperature in Paris: 10.68°C

Weather: clear sky

Wind Speed: 3.09 m/s

Note that the weather response will continually change, and thus, the whole dialogue that follows

will take a different turn. Different locations, different weather conditions, and different points

of interest for the customer will take this dialogue in unique directions. The customer now asks

for recommendations:

User01: What should I first visit with this weather

Chapter 9 339

With the Reasoning option set to None, the GenAI provides personalized suggestions:

Figure 9.12: Asking what activities to do in this weather

The GenAI suggests some engaging activities based on the weather:

Agent: With clear skies and cool temperatures in Paris, it's a great
opportunity to explore outdoor attractions. Here are a few suggestions:

1. Eiffel Tower: Start your day with a visit to the iconic Eiffel Tower.
You can enjoy the view from the ground or take an elevator ride to the top
for a panoramic view of the city.

2. Champs-Élysées and Arc de Triomphe: Take a stroll down the famous
Champs-Élysées and visit the Arc de Triomphe. The clear weather will make
for great photos and a pleasant walk.

…

4. Seine River Cruise: Consider taking a Seine River cruise to see many
of Paris's landmarks from the water. The clear sky will provide beautiful
views of the city.

Upgrading the GenAISys with Data Security and Moderation for Customer Service340

5. Luxembourg Gardens: Enjoy a leisurely walk in the Luxembourg Gardens.
It's a perfect spot to relax and take in the beauty of the well-maintained
gardens.

Make sure to dress warmly, as the temperature is quite cool. Enjoy your
visit!

The user finds the response useful but would also like to visit a museum:

User01:But what if I want to only visit one outdoor site and then go to a
museum?

Without changing the interface configuration, the agent provides a tailored itinerary:

1. Outdoor Site: Eiffel Tower: Start your day with a visit to the Eiffel
Tower. It's an iconic symbol of Paris and offers stunning views of the
city. You can choose to admire it from the ground or take a trip to the
top.

2. Museum: Musée d'Orsay: After visiting the Eiffel Tower, head to the
Musée d'Orsay. It's located along the Seine River and is housed in a
beautiful Beaux-Arts railway station. The museum features an extensive
collection of Impressionist and Post-Impressionist masterpieces by artists
like Monet, Van Gogh, and Degas.

This combination allows you to enjoy both the outdoor beauty of Paris and
its rich cultural heritage. Make sure to check the museum's opening hours
and any ticket requirements in advance. Enjoy your day!

Now, the customer service agent steps in to augment the personalized experience of the customer:

User02: Create an engaging image of the Eiffel tower and the Musée d'Orsay
museum in Paris for a tourist

This kind of multi-user interface could easily be built into a website with features such as text and

image generation, customer profiles, and conversation history—your imagination is the only limit.

Chapter 9 341

In this case, ensure Files is checked to display the image, as shown here:

Figure 9.13: Creating a custom image for the visit

The GenAISys generates a captivating image representing the recommended custom visit, as

displayed here:

Figure 9.14: A custom image for a customized visit

Our GenAISys could be expanded to send the image to the tourist’s smartphone, or even better,

the GenAISys could be developed as a smartphone app connecting with the GenAISys server.

Upgrading the GenAISys with Data Security and Moderation for Customer Service342

The image is great and the weather fine. Pleased, User02 requests a promotional offer:

User02: Create an offer with a 10% discount for a Paris Seine River Cruise

Files is unchecked so the GenAI can craft a text-based promotional message, as shown here:

Figure 9.15: A custom image for a customized visit

The model generates an engaging message:

Agent: Exclusive Offer: 10% Discount on Paris Seine River Cruise!

Experience the magic of Paris from the water with our exclusive Seine
River Cruise. Glide past iconic landmarks like the Eiffel Tower, Notre-
Dame Cathedral, and the Louvre, all while enjoying the stunning views of
the City of Light.

Offer Details:

- Discount: 10% off your Seine River Cruise ticket

- Promo Code: SEINE10

- Validity: Book by [insert date] for travel until [insert date]

Highlights:

- Breathtaking views of Paris's most famous attractions

- Relaxing and scenic cruise experience

- Perfect for couples, families, and solo travelers

Chapter 9 343

The river cruise offer is great, but now User03 steps in with a cutting-edge idea to enhance cus-

tomer engagement:

User03: Create an image of a cool travel bag with all the outdoor
locations a tourist can visit in Paris on a sunny day. Add the Eiffel
Tower and the Musée du Louvre to make it complete.

Files is checked again so the agent can produce the requested image, as shown:

Figure 9.16: Checking files to display an image

The result is the eye-catching design displayed here:

Figure 9.17: A customized travel bag image

Upgrading the GenAISys with Data Security and Moderation for Customer Service344

The manager forwards this custom design immediately to a local printing partner that maintains

travel bag stock and specialized printing equipment. The travel bag will be printed and delivered

to the customer’s hotel within half an hour—a service as convenient and timely as ordering a

pizza! This represents the future of real-time customer service.

For a final touch, the manager asks for an engaging email to be sent to the customer:

User03: Write an engaging email for the tourist that will receive this
custom-printed travel bag at the hotel desk within 30 minutes!

The message could be a notification in an app, a text message, and/or part of the online conver-

sation on a cutting-edge, multi-user, cross-domain, multimodal website!

In this case, Files is unchecked to make room for the GenAI to generate the text, as shown here:

Figure 9.18: Unchecking files to send a message

The message is engaging and highlights the exceptional level of customer service offered by the

travel agency:

Dear [Tourist's Name],

Bonjour and welcome to the enchanting city of Paris!

We are thrilled to inform you that your custom-printed travel bag,
designed exclusively for your Parisian adventure, is ready and waiting for
you at the hotel desk. This isn't just any travel bag; it's your personal
guide to the most iconic outdoor locations in the City of Light, all
beautifully illustrated to inspire your journey.

 If the manager wished, Files could have remained checked, and the image could

have been processed to be attached to the message.

Chapter 9 345

….

We hope this bag not only serves as a practical companion but also as a
cherished keepsake of your time in Paris. Whether you're strolling along
the Seine or enjoying a café au lait at a local bistro, let this bag be
your guide to unforgettable memories.

Please visit the hotel desk within the next 30 minutes to collect your bag
and start your Parisian adventure in style.

…

P.S. Don't forget to share your adventures with us on social media using
#ParisWith[HotelName]! We can't wait to see where your travels take you.

The “P.S.” message is important in a real-time delivery context, as it encourages customers to

share their positive experiences on social media. This kind of user-generated content helps brands

extend their reach and strengthen their market differentiation as competition intensifies across

nearly every industry.

Now let’s move to another location, using a different approach. Restart the session by entering

Exit and rerunning the notebook’s cell. The customer service agent will now explore options for

customers visiting Tokyo:

New Session. User02: Tokyo

In this session, User02, the customer service agent, and User03, the manager, are trying to figure

out what to suggest to their customers who have arrived in Tokyo. They want to customize the

experience to make sure they keep ahead of the competition. They first want to know the weather

for that day, so they select Weather (as in Figure 9.19) and enter Tokyo.

Figure 9.19: Files is unchecked, and Weather is selected

Upgrading the GenAISys with Data Security and Moderation for Customer Service346

The GenAISys returns the weather in real time:

Agent: Current Temperature in Tokyo: 9.51°C

Weather: moderate rain

Wind Speed: 10.8 m/s

Now, User02 would like to know what to suggest for this weather:

User02: What places would you suggest a tourist visit in this weather?

The Weather function is deactivated (see Figure 9.11). The GenAI must analyze the weather and

then suggest activities.

Figure 9.20: Files is unchecked, and Reasoning is set to None

The agent takes the weather into account and makes interesting suggestions:

Agent: In moderate rain and cooler temperatures, it's a good idea to
suggest indoor activities or places where tourists can enjoy themselves
without being too affected by the weather. Here are some suggestions for a
tourist visiting Tokyo in such conditions:

1. Museums and Art Galleries:

- Tokyo National Museum: Located in Ueno Park…

- Mori Art Museum: Situated in Roppongi Hills…

2. Shopping and Entertainment Complexes:

- Odaiba: This man-made island has shopping malls…

- Shibuya Scramble Square: Offers shopping, dining, …

Chapter 9 347

3. Aquariums and Zoos:

- Sumida Aquarium: Located in…

- Ueno Zoo: While some parts…

…

We can see that the GenAISys is adapting to different scenarios in an acceptable way.

Now, User02 is getting some ideas from the response. Since the weather is rainy, why not suggest

a bus tour?

User02: Ok. Write an engaging email to offer a bus tour for some of these
locations to visit in one day. Don't make it too dense. Make the bus tour
nice and cool.

The configuration (Files unchecked, Reasoning set to None) does not change. The GenAISys

makes an engaging offer for a bus tour:

Agent: Subject: Discover Tokyo's Hidden Gems with Our Exclusive Bus Tour!

Hi [Name],

Are you ready to explore Tokyo like never before? Join us for a one-of-a-
kind bus tour that takes you to some of the city's most fascinating indoor
attractions, perfect for a day of adventure, rain or shine!

Tour Highlights:

…

Our comfortable, climate-controlled bus ensures a relaxing journey between
stops, with a friendly guide sharing insider tips and stories about each
location. Plus, enjoy complimentary snacks and refreshments on board!

Tour Details:

- Date: [Insert Date]

- Time: [Insert Time]

- Pick-up Location: [Insert Location]

User03 steps in and asks the GenAISys to write an engaging message for food and beverages:

User03: Write an engaging email for the food and beverages for tourists
taking a bus tour of Tokyo with some stops. Do not mention the stops at
all or the locations. Just focus on the super discount prices for food and
beverages. Make sure to have food with and without meat. No alcohol on the
bus is allowed. Also, think of some gluten-free food.

Upgrading the GenAISys with Data Security and Moderation for Customer Service348

The configuration (Files unchecked, Reasoning set to None) does not change. The GenAISys makes

an engaging offer for food and beverages during the bus tour. The idea is to show the customers

that the travel agency is taking care of them in great detail.

The GenAISys understands the situation and provides an engaging message:

Agent: Subject: Delicious Deals Await on Your Tokyo Bus Tour!

Dear Traveler,

Get ready to embark on a delightful culinary journey as you explore Tokyo
with us! We're thrilled to offer you an array of mouth-watering food and
beverage options at unbeatable prices, ensuring your taste buds are as
entertained as your eyes.

Savor the Flavors:

- Meaty Marvels: …

- Veggie Delights: …

- Gluten-Free Goodies:…

Thirst-Quenching Beverages: Stay refreshed with our selection of non-
alcoholic beverages…

Exclusive Offer:…

…

P.S. Remember, no alcohol is allowed on the bus so that you can enjoy a
safe and family-friendly environment throughout your adventure!

We can see that the GenAISys is flexible and leverages the generative AI models efficiently.

Let’s end our travelling journey experience in New York. Exit the session and rerun the IPython cell.

User02 wants to anticipate activities in New York:

New session. User02: New York

In this session, User02 (customer service agent) and User03 (manager) are brainstorming per-

sonalized recommendations for tourists arriving in Tokyo. They want to tailor the experience to

stay ahead of competitors. First, they check the current weather by selecting the Weather option

(Figure 9.21) and entering Tokyo:

Chapter 9 349

Figure 9.21: Files is unchecked and Weather is selected

The agent provides the weather in real time:

Agent: Current Temperature in New York: 10.06°C

Weather: mist

Wind Speed: 4.12 m/s

User02 thinks that misty weather is not the best day to take customers on a tour of Central Park.

What can the GenAISys come up with?

User02: I'm a tourist customer service agent. Considering the weather, I
was thinking of suggesting an exciting activity to my tourist group. Find
one activity for the morning that could be exciting.

User02 runs the GenAISys with Files unchecked and no Reasoning instruction (Figure 9.22).

The situation is not that easy because we want the customers to visit new places and possibly

surprise them a bit:

Figure 9.22: Files is unchecked and Weather is not selected

Upgrading the GenAISys with Data Security and Moderation for Customer Service350

The GenAISys finds an interesting program that can add a cultural touch to the trip:

Agent: Considering the misty weather in New York, a great morning activity
for your tourist group could be visiting the American Museum of Natural
History. It's an exciting indoor experience where they can explore
fascinating exhibits, including dinosaur fossils, the Hall of Ocean Life,
and the Rose Center for Earth and Space. This activity will keep them
engaged and comfortable regardless of the weather outside.

At the end of the trip to New York, User03, the manager, steps in to offer the customers a souvenir

T-shirt:

User03: The hotel was great for a tourist group in New York because the
view reminded some of them of when they first came to New York with their
parents. I'm sure they would have like to receive a custom T-shirt as a
souvenir to remind them of that experience. Make sure that the image you
produce shows a T-shirt.

User03 decides to activate a full-scale GenAISys CoT generation to analyze customer feedback

and produce a nice T-shirt. Files is checked and Generation is activated, as shown:

Figure 9.23: Files is checked and Generation is selected

Our GenAISys begins the generation process step by step:

"The hotel was great for a tourist group in New York because the view
reminded some of them of when they first came to New York with their
parents.I'm sure they would have like to receive a custom T-shirt as a
souvenir to remind them of that experience.Make sure that the image you
produce shows a T-shirt."

Chapter 9 351

It first performs a memory and sentiment analysis of the feedback the tour guide detected:

Agent: Process: Performing memory and sentiment analysis.

Memory analysis result: Segment 1: "The hotel was great for a tourist
group in New York because the view reminded some of them of when they
first came to New York with their parents."

- Memory Tags: [Episodic Memory, Time Memory Past, Reality Memory]

- Dimension: Emotional

- Sentiment Score: 0.8

- Explanation: This segment references a real past event (their first
visit to New York with their parents) that triggers personal, nostalgic
recollections, placing it in episodic and time (past) memory while
affirming its reality and positive emotional tone.

It then extracts the scores from the content it analyzed:

Process: Extracting scores from response.

Memory analysis result: Episodic Memory sentiment 0.8

Time Memory Past sentiment 0.8

Reality Memory sentiment 0.8

Episodic Memory sentiment 0.75

Time Memory Past sentiment 0.75

Memoryless sentiment 0.5

It then performs a statistical analysis to provide an overall rating:

Process: Statistical analysis

Extracted sentiment scores: [0.8, 0.8, 0.8, 0.75, 0.75, 0.5]

Extracted sentiment scores: 0.73

Scaled rating (0–5): 3.65

Process: Creating content

The score is not 4 or 5 because they would like a souvenir, a T-shirt, and they don’t have it yet!

So, the GenAISys now creates a prompt for image generation:

Prompt created for image generation: "Design a custom T-shirt featuring
the iconic New York skyline or a memorable landmark like Times Square or
Central Park, capturing the essence of a nostalgic and cherished tourist
experience."

Upgrading the GenAISys with Data Security and Moderation for Customer Service352

The GenAISys now creates an image for the prompt (Figure 9.24):

Process: Creating an image

Image created

Figure 9.24: A custom T-shirt

The GenAISys now creates a message for the customer:

Process: Creating a message.

Customer message: Dear Customer,

We invite you to design a custom T-shirt that beautifully showcases the
iconic New York skyline or a memorable landmark such as Times Square or
Central Park. This design aims to capture the essence of a nostalgic and
cherished tourist experience.

Best regards,

For the New York trip, the manager will now instruct the local printer to print the custom image

onto a batch of T-shirts already stocked at the printer’s site. The shirts will be produced and

delivered to the tourist’s hotel within the hour.

Chapter 9 353

The travel agency is extremely satisfied with the GenAISys proof of concept and is now preparing

to organize workshops with all team members to take the system to the next level.

Let’s now summarize our journey—and get ready to explore what’s next!

Summary
The acceleration of modern markets has led to the extinction of waiting times. Real-time respon-

siveness is now the default. The use case explored in this chapter demonstrates that a business-ready

GenAISys proof of concept must be able to provide immediate, real-world services. We imple-

mented a real-time travel agency scenario—one that can easily be adapted to other domains

once you enter project mode.

To make our proof of concept suitable for live demonstration to a team, customer, or investor, we

first integrated a moderation component into GenAISys. We implemented OpenAI’s Omni model

to detect and flag multiple categories of content policy violations. This moderation function is

embedded at the handler selection mechanism level, ensuring that inappropriate user messages

are flagged and rejected before any further processing. To further reassure stakeholders, we added

a data security layer. Using vector similarity search, we built a function that detects whether a

user message aligns with sensitive topics. We created a dedicated Pinecone namespace to store

these topics and queried it against every incoming user message. If a match was found, the system

flagged the content, displayed a warning, and rejected the request.

All flagged moderation and security violations were logged in separate files, and the full con-

versation history can be traced to individual users. With these essential safeguards in place, we

proceeded to implement a real-time weather forecasting feature using OpenWeather—tightly

integrated into GenAISys for weather-aware decision-making. Finally, we walked through a

complete GenAISys dialogue, showcasing the system’s ability to support real-time, multi-user,

cross-domain, multimodal interactions—a powerful illustration of what generative AI can achieve

in production settings.

The next step? Presenting your GenAISys proof of concept to secure the resources needed to ex-

pand and scale the system. But such a presentation must be carefully crafted—and that’s exactly

what we’ll focus on in the next chapter.

Upgrading the GenAISys with Data Security and Moderation for Customer Service354

Questions
1.	 Sensitive topics can be detected with vector similarity searches. (True or False)

2.	 A flagged user message containing a sensitive topic in the GenAISys does not stop the

dialogue. (True or False)

3.	 The OpenAI moderation tool only has one category for foul language. (True or False)

4.	 A flagged user message containing content that violates the content policy of the GenAISys

does not stop the dialogue. (True or False)

5.	 Weather forecasting in real time to automatically suggest activities can give a company

a competitive advantage. (True or False)

6.	 A multi-user, cross-domain, multimodal GenAISys is the future of apps. (True or False)

7.	 Multi-user, cross-domain, multimodal apps don’t exist yet. (True or False)

8.	 Adding GenAISys to apps will significantly boost productivity and engage users. (True

or False)

9.	 A GenAISys should be developed with a customer panel. (True or False)

References
•	 OpenAI moderation: https://platform.openai.com/docs/guides/moderation

•	 The OpenAI Moderation object: https://platform.openai.com/docs/api-reference/
moderations/object

•	 OpenWeather: https://openweathermap.org/

Further reading
•	 OpenWeather’s solar radiance research: https://home.openweathermap.org/solar_

irradiance_history_bulks/new

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name.

Note: Keep your purchase invoice ready before you start.

https://platform.openai.com/docs/guides/moderation
https://platform.openai.com/docs/api-reference/moderations/object
https://platform.openai.com/docs/api-reference/moderations/object
https://openweathermap.org/
https://home.openweathermap.org

https://home.openweathermap.org/solar_irradiance_history_bulks/new
https://home.openweathermap.org/solar_irradiance_history_bulks/new
http://packtpub.com/unlock

10
Presenting Your Business-Ready
Generative AI System

Creating an innovative GenAISys alone will not get us customers, funding, or possibly even rec-

ognition. In today’s fiercely competitive landscape, hundreds, if not thousands, of AI solutions,

agentic systems, and similar offerings are vying simultaneously for market attention. Businesses,

investors, and end users face an overwhelming flood of options—from industry giants such as

Google Cloud, Microsoft Azure, Amazon Web Services (AWS), and IBM to an ever-expanding

array of start-ups and mid-sized companies. Where does that leave us, and what should we do?

We need two things to penetrate the market’s thickening wall: implementation and profitability. In

this book, up to now, we have built a proof of concept of our ability to deliver an effective GenAISys

capable of supporting core business functions across the supply chain—from marketing and pro-

duction to delivery and customer service. But now, we must turn our technical achievements into

a compelling story to effectively communicate and sell our ideas to stakeholders—be it internal

teams, employers, potential customers, or investors. To successfully present our GenAISys, we

need a well-crafted demonstration scenario that highlights our existing capabilities and clearly

conveys our capacity for further innovation and expansion. Deciding exactly when to pause

development and transition into presenting the proof of concept is critical.

Presenting Your Business-Ready Generative AI System356

In this chapter, the method described is only one of the many ways to achieve a successful pre-

sentation of a GenAISys amid relentless AI competition. We will focus on getting straight to the

point. Given that the attention span of present-day AI-informed audiences is limited, capturing

the attention of your audience will prove challenging. The chapter will thus focus on the first

seven minutes of a presentation of our GenAISys. We will transition smoothly from the IPy-

thon-based interface developed throughout this book into a flexible, easily adaptable frontend

web page. This strategy allows us to quickly customize our demonstration to address specific

project requirements, supported by the credibility of our working GenAISys prototype. We will

systematically present the key components: core functionality, vector store integration, essential

key performance indicators (KPIs), external database connectivity, and critical aspects of security

and privacy. Additionally, we will emphasize how the system can be collaboratively customized

through stakeholder workshops.

Finally, to showcase the ultimate flexibility and future potential of our framework, we will in-

troduce a prospective evolution of our GenAISys: a swarm-based multi-agent system (MAS),

demonstrating a powerful new paradigm of human-AI co-worker collaboration. By the end of

this chapter, you will know how to combine the actual GenAISys features with the potential

evolutions that can be added to the system.

This chapter covers the following topics:

•	 Designing the presentation of the GenAISys

•	 Building a flexible frontend web interface

•	 Presenting the basic GenAISys functions

•	 Showing the possible evolutions in terms of integration, security, and customizations

•	 Introducing a MAS

Let’s start by carefully designing the presentation of our GenAISys.

Designing the presentation of the GenAISys
Designing the presentation for the educational GenAISys we’ve built throughout this book goes

beyond the technical dimension. Whether your audience is an internal team, an investor, or a

client, the success of your GenAISys will largely depend on clearly communicating its business value.

Chapter 10 357

A powerful GenAISys presentation must begin with a compelling introduction, especially during

the first few critical minutes, as shown in Figure 10.1:

Figure 10.1: A fast-track presentation

The timing indicated (in minutes) is flexible and can be adjusted according to your needs. How-

ever, modern audiences expect concise, impactful, and effective presentations. Keep your audi-

ence engaged by clearly demonstrating expertise and efficiency. For simplicity, we’ll refer to any

audience—your internal team, investors, or clients—as the customer.

The customer will expect the following timeline:

•	 Minute 1 – Presenting your team and yourself: Present your team and yourself briefly.

Highlight your strong points and then begin the presentation before they get bored. The

length of this introduction is up to you, but don’t overdo it.

•	 Minute 2 – Explain the use case with a convincing KPI: Make sure that the use case you

present is profitable, whether it’s marketing growth, production resource optimization,

reduced delivery times, better customer service to increase sales, or any other activity

booster. Very briefly introduce the generative AI foundation of the project. Then, rapidly

explain that the KPI can be added to the interface and displayed in real time if requested,

as shown:

Figure 10.2: Real-time KPI

Presenting Your Business-Ready Generative AI System358

•	 Minute 3 – Begin presenting the frontend GenAISys interface: No matter how hard you

work, something will always be missing. Also, the GenAISys we built requires explanations

at a higher level with a PowerPoint presentation and frontend web page that we will begin

preparing in the Building a flexible HTML interface section of this chapter. The HTML page

incorporates the functionality we built in the GenAISys and takes it further with ideas that

we need for the presentation and ideas the customer wants. Show that you can rapidly

adapt a flexible HTML page to meet customer needs interactively in workshops, as we

will see in the 6. Customization section.

•	 Minute 5 – Begin showing the AI functions while presenting the flexible interface:

Continue the concept of working together to finalize the GenAISys interface and inte-

gration in a collaborative, human-centric AI approach. Emphasize the unique blend of

next-generation technologies integrated in the GenAISys, such as OpenAI, DeepSeek, and

Pinecone. Keep the presentation as human-centric as possible, showing that the goal is

to leverage the power of the multi-user GenAISys you built to increase performance with

AI as copilots, not replacements. Keep this in mind as much as possible to convey a col-

laborative spirit that will help build trust in your system. You can begin to show some of

the functionalities of the educational GenAISys we built in this book. You can also show

more if you went further to adapt to the use case.

•	 Minute 7 – Alternate between the web interface and the GenAISys functions: Now, it’s

time to show how your GenAISys can provide an efficient service by combining implemen-

tation and profitability. Navigate between the web interface and the GenAISys you built.

Show your expertise with the GenAISys components. Demonstrate your flexibility and

creativity with a web interface that can be rapidly adapted to meet the customer’s needs.

By carefully structuring your presentation this way, you demonstrate clear expertise and practical

flexibility. You’ve set the stage to convincingly showcase your business-ready GenAISys.

Next, let’s build out the flexible web interface, preparing the foundation to seamlessly guide your

audience through your fully integrated and user-friendly GenAISys.

Building a flexible HTML interface
The demonstration web interface needs to be flexible and adaptable. In some cases, we might

even have to adapt the code on the spot during a coffee break! A customer might insist on adding

a logo, changing the font, or changing the color. If we resist, this may become a stumbling block

that casts a shadow over the whole presentation! We need to walk a fine line between adaptability

and stability in this new era of generative AI-aware customers. Hence, in this section, we will first

Chapter 10 359

build an interface with GenAISys’s core functionality, keeping flexibility in mind. You can have the

web page open in your HTML editor and refresh it in real time if the customer insists on seeing a

modification immediately. Remember, everybody has access to AI copilots and can overtake us

in real time. We need to be faster than the competition, which could also be an end user.

The goal is to show that the IPython proof-of-concept interface is independent of the underlying

AI orchestration functions. Thus, it can be adapted to any environment necessary for a project. In

this case, we are choosing to show what a web page on a dedicated server would look like. Let’s

get started by opening GenAISys_Presentation.ipynb within the Chapter10 directory on GitHub

(https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/

main).

First, we download the helper scripts and web pages required for the demonstration:

!curl -L https://raw.githubusercontent.com/Denis2054/Building-Business-
Ready-Generative-AI-Systems/master/commons/grequests.py --output
grequests.py

from grequests import download

download("Chapter10","01.html")

download("Chapter10","02.html")

download("Chapter10","03.html")

download("Chapter10","04.html")

download("Chapter10","05.html")

download("Chapter10","06.html")

Then, we define a reusable Python function to conveniently load and display the HTML interface

within the notebook:

from IPython.display import HTML, display

def display_interface(filename):

 with open(filename, "r", encoding="utf-8") as file:

 html_content = file.read()

 display(HTML(html_content))

In this section, we’ll carefully walk through the code for 01.html. The goal is to ensure you clearly

understand the interface’s structure and logic. This clarity is critical for responding swiftly to

potential customer requests during the presentation.

https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main
https://github.com/Denis2054/Building-Business-Ready-Generative-AI-Systems/tree/main

Presenting Your Business-Ready Generative AI System360

The code begins with a standard <head> section, which includes both metadata (such as <meta

charset="UTF-8"> and <title>). The CSS, visual styling, is embedded inside the <style> tag:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Generative AI Chat Interface</title>

 <style>

 body {

 font-family: Arial, sans-serif;

 margin: 20px;

 background: #f4f4f4;

 }

….

 </style>

</head>

Both the <head> and <body> sections are fully customizable based on the project’s specific brand-

ing and design guidelines. In this case, the <body> container will wrap all the content and apply

the CSS layout styling we just defined:

<body>

 <div class="container">

The header doesn’t contain the term “Generative AI System.” The choice, in this case, is to provide

an accessible term that a broader audience can relate to:

<h1>Generative AI Chat Interface</h1>

The user selection block contains the three generic usernames we have been using throughout

the book. It provides flexibility to adapt to any questions about who they are, depending on the

project’s specifications. You can choose to provide domain-specific names depending on the

context of your presentation. You could also add more users. For the moment, let’s keep it simple:

<div class="form-group">

 <label for="userSelector">User:</label>

 <select id="userSelector">

 <option>User01</option>

 <option>User02</option>

Chapter 10 361

 <option>User03</option>

 </select>

</div>

The user input message area contains standard information. We can modify it to suit an indus-

try or task. It could even vary depending on the user and be domain-specific, such as “enter the

customer’s review here.” In this case, we will display the message we have been using to build

our GenAISys:

<div class="form-group">

 <label for="messageInput">Your Message:</label>

 <textarea id="messageInput" placeholder="Type your message here or type
'exit' or 'quit' to end the conversation." rows="4"></textarea>

</div>

A standard send button is then implemented, but keep in mind that it can be visually customized

according to specific branding requests during your presentation:

<div class="form-group">

 <button id="sendButton">Send</button>

</div>

Let’s now add the checkbox options/widgets for the AI agent to enable voice or activate file man-

agement:

<div class="checkbox-group">

 <label>

 <input type="checkbox" id="agentCheckbox" checked>

 Agent

 </label>

 <label>

 <input type="checkbox" id="voiceCheckbox">

 Voice Output

 </label>

 <label>

 <input type="checkbox" id="filesCheckbox">

 Files

 </label>

</div>

Presenting Your Business-Ready Generative AI System362

Study the code, regardless of how it was designed, to be prepared to modify it in real time if the

situation becomes tense over how something is displayed. This will show that you are flexible

and can easily adapt to customer needs. It can be tricky, but it might be necessary. Just make sure

to modify something only if the customer insists so as to avoid taking unnecessary risks.

The Reasoning dropdown highlights the powerful reasoning capabilities within our GenAISys, as

implemented throughout the previous chapters. You can readily adjust or add reasoning options

to match your project specifications:

<div class="form-group">

 <label for="reasoningSelector">Reasoning:</label>

 <select id="reasoningSelector">

 <option value="None" selected>None</option>

 <option value="Analysis">Analysis</option>

 <option value="Generation">Generation</option>

 <option value="Mobility">Mobility</option>

 </select>

</div>

The model selection block contains strategic information. The customer will want to know whether

the model is secure and open source, or which country it originates from. We can add other models

or explain that we can add more models with the flexibility of the drop-down list:

<div class="form-group">

 <label for="modelSelector">Model:</label>

 <select id="modelSelector">

 <option value="OpenAI" selected>OpenAI</option>

 <option value="DeepSeek">DeepSeek</option>

 </select>

</div>

Finally, the output area is a standardized section for displaying conversation responses clearly

and legibly:

<div class="output-area">

 <p>Conversation output will appear here...</p>

</div>

Chapter 10 363

We are now ready to write the closing tags and open the file:

 </div>

</body>

</html>

The 01.html file was created with a basic text editor, uploaded to our GitHub repository, and then

downloaded automatically by our notebook. You can directly open the file in a browser or within

your presentation environment. In this case, we will now open it in the notebook.

Let’s now outline the seven-step roadmap we’ll follow to effectively showcase our GenAISys

before exploring each component in greater depth in the upcoming sections:

1.	 Present the core GenAISys by focusing on the practical features of the GenAISys. Don’t get

lost in low-level technical terms about Python, CSS, HTML, or anything else. There is only

one goal: to show the audience how this interface can help them build a human-centered,

next-generation GenAISys.

2.	 Present the vector store to show how an organization’s data can be safely stored in an

innovative manner. The concept to convey is that the data is not static and stored in a single

location, but rather dynamic. We can access the data directly, just like a GPS in our car.

3.	 A human-centric approach to KPIs to show that although we can automate many tasks,

a human-centered system can be a profit center. If humans have real-time KPIs to prove

productivity gains in real time, a powerful collaborative human-AI team will take a com-

pany to the next level.

 The choice of whether to use HTML for the presentation is yours. For this particular

strategy, a PowerPoint presentation may be too static, while directly running Python

code risks distracting top executives from core concepts. An HTML page strikes an

effective balance—more dynamic than static slides, yet clearer and more flexible

than live code.

I would advise, however, that you keep your focus on the message, not the medium.

Articulate the human-centric and automated gains that will take your audience to

the next level.

Presenting Your Business-Ready Generative AI System364

4.	 Integrating platforms and frameworks can be an option. It will be up to the company to

decide. We demonstrate our expertise in building a GenAISys from scratch. We are thus

valuable assets to deploy the complex functions that any GenAISys requires, whether

through a platform or not. We will also demonstrate that we can integrate powerful MASs

to enhance the company’s productivity.

5.	 Security and privacy are key components of a project. We will demonstrate that we can

implement standard practices in this field based on the best practices and regulations

currently available on the market.

6.	 Customization is our brand image! We have demonstrated our ability to build a cut-

ting-edge GenAISys from scratch. We are thus able to customize any AI features that are

required.

7.	 GenAISys resources (RACI) are our realistic touch. We know how hard it is to build a

GenAISys. We recognize that transitioning from a model to a system is a complex process.

We recognize that the one-to-one, user-to-copilot experience alone is insufficient. We

have a one-to-many vision, an architecture that scales to groups of users, which requires

careful resource planning.

With that roadmap in place, let’s begin by presenting the core GenAISys.

1. Presenting the core GenAISys
Navigate to the 1. The Generative AI Chat Interface section of the notebook, and run the following

cell to display the 01.html page:

display_interface("/content/01.html")

This output mirrors exactly the IPython interface we have carefully developed throughout the

book. However, by displaying it as a web page, we emphasize that our GenAISys interface is

platform-independent—it can be hosted anywhere, embedded in presentations, or accessed via

web browsers, as illustrated in Figure 10.3:

Chapter 10 365

Figure 10.3: Generative AI Chat Interface

The descriptions provided during your presentation need to be user-friendly and intuitive. You

must adapt your level of technical terminology to the audience. Start with clear terms and then

expand when necessary to provide more technical or even more straightforward explanations as

needed. The flexibility of our explanations must match the flexibility of the GenAISys we’ve built.

Presenting Your Business-Ready Generative AI System366

The following are some ways to address the many questions an audience can ask and what we

must address. The technical details have been described throughout the book. The idea here is

to prepare you to answer tricky questions. Let’s go through each component:

•	 Generative AI chat interface: This term is intuitive. The customer can choose any other

term that suits the project’s needs.

•	 User: Explain that your GenAISys possesses multi-user functionality. We can limit the

user to one or expand it to n users. Each user can have a specific name, such as “John Doe,”

a role, such as “Marketing,” or any other username depending on the project. In this case,

the user is selected from a list:

Figure 10.4: Manual or automatic user selection

•	 Your message: We need to explain that the user message can contain keywords decided

by the customer. The messages will thus trigger AI behaviors such as text generation,

image generation, reasoning (chain of thought, or CoT), and advanced text analysis. At

this point, we can refer to the use cases we wish to present. Depending on the scope of

the presentation, you can decide to drill down (toggle to the Google Colab notebook or

your local installation) and show your use cases or not. Don’t forget to explain that a full

conversation can be saved and summed up.

•	 Agent, Voice Output, and Files checkboxes: We can explain these options and decide

whether to drill down or not, depending on the customer’s interest. You can also expand

with creative ideas if they are within the scope of the project the customer is looking for.

•	 Reasoning: The reasoning agents will show how effective your GenAISys can be. Make

sure to describe the options in Figure 10.5 to showcase the power of the GenAISys when

it comes to neuroscientific text analysis, CoT generation, or generic mobility features.

Briefly explain the CoT approaches discussed in this book. Go into detail if asked using

Google Pro or your local installation (personal computer or server).

Chapter 10 367

Figure 10.5: Selecting a reasoning function

•	 Model: The choice of model, as shown in Figure 10.6, perfectly illustrates the system’s

flexibility. The customer can decide to use an API or a locally installed open source model.

Explain that the GenAISys can support other models if necessary.

Figure 10.6: Selecting a generative AI model

•	 Output area: We can explain that the output generates text and images. If requested, we

can decide whether to show an example.

We can conclude by explaining that the GenAISys interface is just the frontend. The GenAISys

proof of concept is a sophisticated, scalable, and secure structure. The interface provides a seam-

less, multi-user, high-performance system that allows interactions from around the world. Also

explain that this proof of concept can be deployed seamlessly onto cloud services such as AWS,

Microsoft Azure, IBM Cloud, or Google Cloud. At this point, we can delve into the details of the

functionality developed in this book and adapted to the specific use case at hand.

Presenting Your Business-Ready Generative AI System368

2. Presenting the vector store
A vector store is an important component of the GenAISys you built. First, explain that Pinecone

was implemented, but that you can implement another vector store if needed. Then, demonstrate

how visual elements can inform the user of the Pinecone index’s status on the frontend interface.

Start by duplicating 01.html to a new file named 02.html to keep the interface’s initial presen-

tation as it was. Why? A fully populated web interface can confuse your audience, but a step-by-

step approach assures you don’t lose anybody along the way. Also, maybe the customer might

not want to see the Pinecone connection. Or the customer might not want to go further and start

the project with 01.html. We must remain flexible and adaptable in case of all these scenarios.

In 02.html, first add a clear Pinecone connection indicator:

<div class="container">

 <h1>Generative AI Chat Interface</h1>

 <!-- Pinecone Connection Status -->

 <div id="pineconeStatus" style="text-align: center; margin-bottom:
10px;">

 ● Connected to Pinecone Index

 </div>

 <!-- Existing form elements -->

 ...

</div>

The customer may also want to review the Pinecone retrieval before augmenting the input to the

generative AI model. We could add a new section, in this case:

<div class="output-area">

 <p>Conversation output will appear here...</p>

</div>

<div id="pineconeResults" style="background: #fff; padding: 10px; border:
1px solid #ccc; margin-top: 10px;">

 <h3>Context Retrieved from Pinecone</h3>

 <p>No results yet.</p>

</div>

We can then run the cell to display the interface:

display_interface("/content/02.html")

Chapter 10 369

The interface now contains the possible enhancements we could apply, as shown here:

Figure 10.7: Enhancing the interface with Pinecone features

Presenting Your Business-Ready Generative AI System370

To present Pinecone, we could drill down further and show the structure of a vector store by going

to our Pinecone console at https://www.pinecone.io/. You can summarize what was covered

in Chapter 3 while showing the Chapter03/Pinecone_RAG.ipynb version of the notebook with a

checklist such as the following one:

•	 Pinecone installation

•	 OpenAI installation

•	 Chunking

•	 Embedding

•	 Upserting

•	 Querying

Before drilling down into a notebook, however, make sure your audience understands the mean-

ing of vectors and vector stores. Otherwise, simply explain that the vector store provides a highly

efficient way of retrieving data and augmenting generative AI inputs to obtain better results.

You can also run any other notebook that queries the Pinecone index or one you built. Note that

the notebooks in this book are educational, so you might want to build on them to create your

own notebooks for a presentation. Let’s now introduce KPIs in a human-centric environment.

3. Human-centric approach to KPIs
A human-centric implementation of a GenAISys remains the best way to deploy AI. A human-cen-

tered approach seems counterintuitive at first. Why not just replace employees? Why not lay off

all the people who can be replaced? Why not get a lot of cash out of firing employees? After all,

why not drastically reduce the workforce since a GenAISys can save so much time and money?

Why not simply invest the money and earn a rapid ROI? A simple, counter-intuitive ROI Scenario

1 through layoffs or “replacement” would look as follows:

https://www.pinecone.io/

Chapter 10 371

Indeed, certain corporations have pursued extensive layoffs, choosing to rely heavily on AI. They

might even appear successful. However, before following that path, consider my personal expe-

rience and perspective, then choose how you wish to proceed. Let’s go through my vision of ROI

through growth.

ROI through growth
Figure 10.8 illustrates my vision of AI implementations and policy based on real-life AI projects

over the past decades. It represents ROI by increasing sales through GenAISys neuroscientific

marketing, decreasing time to market production-to-delivery with generative AI, including CoT,

and boosting sales with a GenAISys.

Figure 10.8: Evolution through growth

Presenting Your Business-Ready Generative AI System372

How is that possible? Am I an idealist? Let me break this down with a real-life AI project I im-

plemented for a distribution center in a mega-warehouse of 100,000+ square meters, which is

roughly 1.076+ million square feet. The project was a ground-up hybrid AI and advanced math-

ematics project:

•	 The AI location optimizer determined in which location the warehouse should be built

by calculating the barycenter of thousands of deliveries from the production sites (A) to

the distribution centers (B) and then to the local customers (C), such as supermarkets

and large stores, as shown in Figure 10.9:

Figure 10.9: Mega-warehouse AI-driven optimization

•	 The internal warehouse AI agent optimized the warehouse’s design, including the number

of piers and zones.

•	 The AI warehouse agent then optimized the flow from the piers to the storage locations

(from A) and from the storage to the piers for delivery (C).

•	 The key issue was the number of messages for large, unplanned events, such as late truck

arrivals (due to traffic or weather) and faulty products. A GenAISys, such as the one we

built in this book and adapted to this use case, could automate these messages to a cer-

tain extent.

So why not replace the many planners who work 24/7 to solve these issues automatically? Every-

body first thought this was possible. I found that this could be done to a certain extent. However,

I discovered quickly that many parameters the planners considered were not predictable. Gen-

erative AI, or even rule-based systems, excel at detecting patterns but are at a loss when there are

none! They struggle significantly when encountering unprecedented, non-repeating scenarios.

Chapter 10 373

Consider this actual warehouse scenario: stickers are missing from crate #100234, while another

crate contains a faulty product (#343445). Simultaneously, an automated guided vehicle (AGV)

is inexplicably operating slower than usual. The truck at Pier 94 must depart immediately, as it’s

nearly 11:00 p.m. on a Saturday, and trucks cannot use highways on Sundays. Any delay now risks

severe penalties and customer dissatisfaction.

I found that many similar problems occurred daily. So, yes, a hybrid GenAISys with powerful

mathematical functions could automate many decision-making processes. And yes, this repre-

sented a lot of gross margins over a year in large warehouses. But what about all the unsolved

problems that an AI cannot solve? Remember, in distribution supply chains, late deliveries incur

stiff penalties and possibly customer distrust, leading to the loss of many contracts.

At that point, I worked 24/7 on another approach. Let’s keep the personnel, especially the planners,

even if increased productivity requires fewer personnel overall in the warehouse. Why and how?

I designed an interface that contained a KPI like the one we will add in this section with an AI

agent and a human expert. Figure 10.10 illustrates how an expert can visualize KPIs in real time.

Every time the expert ran the AI system and completed the decision, taking complex unplanned

events into account, the system displayed how much money was saved, such as not having to use

a second truck, switching orders to optimize personnel, and having the extra time to fix errors.

Figure 10.10: Human-centric GenAISys collaboration

Presenting Your Business-Ready Generative AI System374

The expert planner thus increased the speed of the incoming and outgoing storage events. The

warehouse could process more units without having to build additional piers, purchase new

AGVs, or hire more hands. The productivity gains represented a 3% gross margin increase for the

mega-warehouse. Such a significant surge in gross margin in warehouse management generated

substantial profit.

You can design the ROI ratio with the parameters you wish, but the core concept is that collabo-

rative human-AI growth is highly productive. The ROI through growth produced far more margin

with a human-centric system than laying off personnel:

This successful project had a huge impact on my reputation and sales:

•	 The word spread that Rothman was ethical and that his AI systems could be trusted.

•	 Human-centric successes built an image of AI projects that would federate teams, not

destroy them.

•	 AI expertise could work 24/7 to help teams boost their performance, thus generating

growth and obtaining bonuses!

Ultimately, the choice between aggressive layoffs and strategic growth remains yours. This ex-

ample simply reflects my personal approach and experiences. In any case, if the customer wants

a real-time KPI, let’s add it to the interface.

Adding a real-time KPI to the GenAISys web interface
If your customer is interested, here’s how we can implement a real-time KPI into the existing web

interface, emphasizing the human-centric approach:

1.	 Copy the previous interface file (02.html) to a new version (03.html) to preserve previous

interface states. Then, add the KPI panel:

 <!-- Gross Margin KPI Panel -->

 <div class="kpi-panel" id="grossMarginKPI">

 <h2>Gross Margin</h2>

 <div class="kpi-value" id="grossMarginValue">Loading...</div>

 </div>

Chapter 10 375

2.	 Then, we will add the CSS styling:

 .kpi-panel {

 background: #fff;

 padding: 15px;

 margin: 20px auto;

 border: 1px solid #ccc;

 border-radius: 5px;

 text-align: center;

 box-shadow: 0 2px 4px rgba(0,0,0,0.1);

 max-width: 300px;

 }

 .kpi-panel h2 {

 margin-bottom: 10px;

 font-size: 20px;

 }

 .kpi-value {

 font-size: 36px;

 font-weight: bold;

 color: #007bff;

 }

3.	 Finally, we will add real-time update simulations in JavaScript to illustrate what the KPI

would look like if implemented in real-time situations:

 // Example function to update the KPI

 function updateGrossMargin() {

 // Replace this with your real-time data-fetching logic

 const grossMargin = fetchGrossMarginFromBackend(); // your API
call here

 document.getElementById('grossMarginValue').textContent =
`$${grossMargin.toFixed(2)}`;

 }

 // Simulate real-time update every 5 seconds

 setInterval(updateGrossMargin, 5000);

Now run the cell that displays 03.html in section 3. KPI of the notebook:

display_interface("/content/03.html")

Presenting Your Business-Ready Generative AI System376

This simulation displays real-time updates of the gross margin KPI, visually reinforcing the value

human planners bring to GenAISys implementations:

Figure 10.11: A human-KPI relationship

Chapter 10 377

The customer may wish to delete this function or enhance it to adapt it to their project. Our role

is to adapt to the project’s needs, regardless of the level of automation required. We will now

proceed to present the integration of our GenAISys in the customer’s environment.

4. Integration: Platforms and frameworks
Integration is often among the most challenging stages of deploying a GenAISys, particularly when

it comes to selecting platforms, operating systems, and frameworks. While start-ups or internal

projects might initially have the luxury of freely selecting platforms, real-world scenarios often

involve stringent constraints from investors, customers, or internal policies. The following exam-

ples are drawn from real-world situations that illustrate the potential challenges you may face:

•	 “Our company only works with Windows Server with ISO with native security. We will

not accept your Ubuntu service. It’s not open to discussion. It’s our policy.” (https://www.

microsoft.com/en-us/evalcenter/evaluate-windows-server-2025)

•	 “Our company only works with Ubuntu Server. We will not accept any Windows applica-

tions. It’s not open to discussion. It’s our policy.” (https://ubuntu.com/download/server)

•	 “As an investor, we need to make sure that your GenAISys meets AWS security and privacy

standards that adhere to US-European regulations through the Data Privacy Framework

(DPF). We don’t care about the third-party components you installed. Either you use

AWS’s framework, or we will not invest.” (https://aws.amazon.com/compliance/eu-

us-data-privacy-framework/)

•	 “Are you joking? Do you really think we are going to let you into our network with a Ge-

nAISys? Impossible. So, forget about the security and privacy components you are pre-

senting, including AWS’s framework. You’re on a highly secure aerospace site. We are

going to install your GenAISys, not you, on an isolated VM with absolutely no access to

the web. Only certified users will have access to it. The connections are monitored by

our security department 24/7 in real time. Any attempt to write unauthorized prompts

will be filtered before they reach your system, accompanied by a high-security alert. We

will not tell you more. We’ll just give you a hint. One of our strategies is our IBM Intru-

sion Detection and Prevention Systems (IDPSs).” (https://www.ibm.com/docs/en/
snips/4.6.0?topic=introducing-security-network-intrusion-prevention-system-

ips-productn)

•	 “We have been working with Google Cloud for many years and will only accept systems

that fit into our hosting, security, and privacy framework.” (https://cloud.google.com/)

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2025
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2025
https://ubuntu.com/download/server
https://aws.amazon.com/compliance/eu-us-data-privacy-framework/
https://aws.amazon.com/compliance/eu-us-data-privacy-framework/
https://www.ibm.com/docs/en/snips/4.6.0?topic=introducing-security-network-intrusion-prevention-system-ips-productn
https://www.ibm.com/docs/en/snips/4.6.0?topic=introducing-security-network-intrusion-prevention-system-ips-productn
https://www.ibm.com/docs/en/snips/4.6.0?topic=introducing-security-network-intrusion-prevention-system-ips-productn
https://cloud.google.com/

Presenting Your Business-Ready Generative AI System378

•	 “We only work with Microsoft Azure for everything: hosting, AI, security, and privacy.

Let’s assume that you have an innovative GenAISys. How will it fit in our framework?”

(https://azure.microsoft.com/en-us/)

The list of possible hosting platforms, security, and privacy frameworks is limitless! Your GenAI-

Sys proof of concept must remain flexible. This flexibility is why the frontend HTML page we’ve

built is designed for quick adaptation to specific customer requirements—without necessitating

deep modifications at the backend. Then, you can take the customer as deep as requested with

the educational components built in this book and the ones you have added to prepare a profes-

sional-specific presentation.

But integration doesn’t stop here! Creative and unexpected requests can arise. A potential cus-

tomer might ask you the following two questions:

•	 “We really love your GenAISys! The multi-user feature is fantastic, especially since it sup-

ports activating or deactivating the AI agent! Great! We’ll purchase your system immedi-

ately if you can get it to work with the Zoom API. That would be tremendous! How long

would it take you to integrate your GenAISys with Zoom?” (https://developers.zoom.

us/docs/api/)

•	 “We love love love your Zoom integration! It’s great! But our company policy is only

to use Microsoft Teams. How long would it take you to integrate your GenAISys with

Teams?” (https://learn.microsoft.com/en-us/graph/api/resources/teams-api-

overview?view=graph-rest-1.0)

Once you address these challenges, further integration demands may emerge around enter-

prise-level ERPs (such as SAP or Oracle), specific database solutions, or even certifications to

authenticate your GenAISys’s compliance and security measures. For that I say, welcome to the

real world! You must hold on to one basic principle: No matter how far you develop your GenAISys,

potential customers will often ask for more or a different way to implement your system. Your

GenAISys provides legitimacy. Beyond that, remain a flexible expert!

Let’s now demonstrate our willingness to adapt to any situation. Copy 03.html and name it

04.html to keep the interface’s previous step as is. Add this section to the HTML frontend page:

 <!-- ERP Integration Dropdown -->

 <div class="form-group">

 <label for="erpIntegrationSelector">ERP, database, platform and
meeting Integration:</label>

 <select id="erpIntegrationSelector">

https://azure.microsoft.com/en-us/
https://developers.zoom.us/docs/api/
https://developers.zoom.us/docs/api/
https://learn.microsoft.com/en-us/graph/api/resources/teams-api-overview?view=graph-rest-1.0
https://learn.microsoft.com/en-us/graph/api/resources/teams-api-overview?view=graph-rest-1.0

Chapter 10 379

 <option value="none" selected>Select ERP or Meeting API</option>

 <option value="SAP">SAP</option>

 <option value="Oracle">Oracle</option>

 <option value="Microsoft Dynamics">Microsoft Dynamics</option>

 <option value="NetSuite">NetSuite</option>

 <option value="AWS">AWS</option>

 <option value="Google Cloud">Google Cloud</option>

 <option value="Azure">Azure</option>

 <option value="Zoom API">Zoom</option>

 <option value="Teams API">Teams</option>

 <option value="Other">Other</option>

 </select>

 </div>

Now, run the page to display the updated interface:

display_interface("/content/04.html")

This newly added integration selection appears just below the Reasoning dropdown (as shown in

Figure 10.12). It’s an excellent visual aid to discuss multimodal CoT, ERP integrations, or specific

platform compatibilities.

Figure 10.12: ERP, database, platform, and meeting integration list

Presenting Your Business-Ready Generative AI System380

Before adding this dropdown, ensure you’re thoroughly prepared. Familiarize yourself with each

listed integration (illustrated in Figure 10.13), as your audience may ask specific, detailed ques-

tions on each item:

Figure 10.13: The list of some of the possible integrations

Remember, the integration flexibility your GenAISys offers extends beyond these examples. It

might even include MAS implementations—another sophisticated approach we will now explore.

Showcasing advanced frameworks: A MAS
At this point in the presentation, you can pivot from showing what your GenAISys currently does

to highlighting the future it enables. Introducing a MAS is not just a new feature—it’s a glimpse

into the transformative potential of generative AI, demonstrating how your system’s core design

can handle complex tasks. It captures the very philosophy of this book: human-centric, scalable,

and collaborative AI.

When deciding whether or not to present it, consider the following parameters:

•	 This could be the “wow” moment because you are opening the door to the future.

•	 This could also be a terrifying moment for a risk-averse audience who might be scared of

the implications, no matter what you say: job displacement, replacement, or destruction.

Chapter 10 381

•	 Even if it is a “wow” moment, the content might be too complex and maybe should wait

until the GenAISys is in implementation. If this happens, you can add this MAS to the

handler registry of the GenAISys and let a user decide whether to activate it or not.

•	 Even if it is a “wow” moment and the audience wants to go further, remind them before

letting it run on its own that the human-centered GenAISys with a human-machine inter-

face ensures that experts control the output, even within advanced MAS implementations.

If you choose to present the MAS, frame it clearly as an innovative game-changer. It can operate

autonomously or partially autonomously—either standalone or through a simplified interface

within your existing GenAISys.

To see the full implementation of this MAS, open the GenAISYS_&_MAS.ipynb notebook. The

program’s flow and code are designed to be highly self-explanatory, with each section having a

clear explanation of its purpose. We, meaning the human author and Gemini 2.5 Pro/ChatGPT,

my co-workers for this project, have taken care to add detailed comments directly in the code

to explain not just what the functions do but also the design decisions behind them—from the

prompt engineering that guides the agents to the asynchronous patterns that enable the swarm

to run efficiently.

The notebook has three key features:

•	 The MAS: This notebook demonstrates an educational MAS, as shown in Figure 10.14. This

MAS orchestrates a swarm of AI agents for concurrent task processing. The program is

organized by first setting up the asynchronous environment and defining the core com-

ponents: independent worker agents that create and solve tasks, a summarizer agent for

synthesis, and a central orchestrator to manage the two-stage workflow. The final cells

execute the complete simulation, showcasing an efficient, parallel approach to complex

problem-solving.

•	 Human-AI co-worker collaboration paradox: Although this program demonstrates AI

agents automating tasks, a concept often tied to human replacement, the notebook itself

is a testament to human-AI co-worker collaboration. Authored by a human, it was then

refined with ChatGPT and evolved into this MAS in partnership with Gemini. This process

mirrors the book’s central, human-centric theme: the future is not AI versus humans but

AI as a co-worker, augmenting our own creativity and productivity.

Presenting Your Business-Ready Generative AI System382

•	 “From-scratch” approach: A deliberate choice was made to build this system from foun-

dational libraries such as asyncio and aiohttp rather than using a pre-existing agentic

framework. This from-scratch approach serves a dual purpose. First, it demystifies the core

mechanics of how multi-agent orchestration works, an educational goal of this project.

Second, it ensures the resulting framework is as flexible and modular as possible, free

from the constraints of any single platform, and ready to be adapted to any real-world

business requirements.

Figure 10.14: MAS workflow overview

The preceding figure shows the main components of the MAS:

•	 The central orchestrator directs the workflow with helpers that display the outputs of

the agents in less than a second per task in the chapter notebook

•	 Worker agents process tasks concurrently, interacting with OpenAI

•	 The summarizer agent synthesizes responses, enabling the agents to interact through

the outputs to form a summary of the MAS’s work

Let’s now look into the strategic integration options.

Chapter 10 383

Strategic integration options for the MAS
Now that we’ve established the what and the why of this MAS, the crucial business question is

how it fits with the GenAISys we’ve presented.

Figure 10.15: The strategic integration models for the MAS

As shown in Figure 10.15, we can offer three strategic visions for its deployment:

•	 Model A as an integrated handler: For many use cases, the entire swarm process can be

encapsulated as a new function and added to the handler registry of the core GenAISys.

A user could trigger this massive parallel task by simply selecting the Swarm Processing

option from the Reasoning dropdown. This demonstrates the modularity and extensibility

of the primary system.

•	 Model B as an independent, specialized service: For a massive, dedicated need (e.g.,

analyzing millions of documents or real-time data streams), the MAS can be deployed as

a separate, highly optimized service. The main conversational GenAISys could then call

this service when needed. This showcases the ability to build a robust, microservices-style

architecture for enterprise-level problems.

Presenting Your Business-Ready Generative AI System384

•	 Model C as the pillar of a larger AI platform: We can frame the entire GenAISys as a

platform with two main pillars. The first is the conversational and reasoning agent for

human-centric collaboration. The second is the Swarm Intelligence Engine (MAS) for

large-scale automation. This presents the most ambitious and powerful vision of the work,

not just a tool but a comprehensive, business-ready AI platform.

This integrated vision elevates your GenAISys beyond mere functionality into a fully realized,

enterprise-ready AI ecosystem.

Having built your GenAISys from the ground up, you now possess a powerful, flexible AI control-

ler capable of dynamic orchestration and advanced reasoning. This solid foundation uniquely

positions you to embrace emerging standards such as the Model Context Protocol (MCP) and

the Agent Communication Protocol (ACP):

•	 Model Context Protocol: MCP offers a standardized way for your GenAISys to seamlessly

access and integrate with diverse external tools and data sources. If a customer wants to

implement this, you now have the skills to complete the job. You can learn more about

MCP and its specifications here: https://modelcontextprotocol.io/.

•	 Agent Communication Protocol: ACP provides the blueprint for your sophisticated AI

agents to collaborate effortlessly with other specialized agents. You have built many agents

throughout the book preparing you for this protocol. You can find more information about

ACP and its course on DeepLearning.AI’s platform, often in partnership with IBM Re-

search’s BeeAI: https://www.deeplearning.ai/short-courses/agent-communication-

protocol/.

Your expertise in designing intelligent AI pipelines and agentic workflows means you are well

equipped to leverage and even contribute to these powerful interoperability frameworks, taking

your business-ready AI solutions to the next level. Now comes a more difficult aspect: security

constraints and privacy regulations.

5. Security and privacy
Security and privacy often inherit constraints from the selected hosting platforms or frameworks

decided in the initial integration phase. However, even if your system aligns with established stan-

dards, you must clearly demonstrate your moderation and data security components within the

GenAISys. Always be ready to face rigorous questions on these topics. It’s strongly recommended

to have a certified security expert alongside you during the presentation. If that’s not possible,

ensure you demonstrate your willingness to adapt your GenAISys according to the customer’s

established protocols and frameworks.

https://modelcontextprotocol.io/
https://www.deeplearning.ai/short-courses/agent-communication-protocol/
https://www.deeplearning.ai/short-courses/agent-communication-protocol/

Chapter 10 385

Here are essential security layers that your GenAISys might need to integrate or align with—re-

view them carefully to be ready for challenging questions, even if another team or external service

manages these security layers:

•	 Encrypted communications: Communicate how data encryption is managed. Refer to

robust resources such as IBM’s overview of encryption to ensure you’re prepared (https://

www.ibm.com/think/topics/encryption).

•	 Audit reports and penetration testing: Customers often demand proof of regular security

testing. Make sure you understand the penetration testing standards of major providers

such as AWS (https://aws.amazon.com/security/penetration-testing/).

•	 Access controls and authentication: Discuss how your GenAISys integrates with indus-

try-standard access management protocols. Familiarize yourself with frameworks such

as Google Cloud’s access control methodologies (https://cloud.google.com/storage/

docs/access-control/).

•	 Monitoring and incident response: Articulate your system’s ability to handle security

incidents. It’s beneficial to reference frameworks such as IBM’s incident response guide-

lines (https://www.ibm.com/think/topics/incident-response).

You don’t have to be an expert, but at minimum, you should comfortably discuss these areas us-

ing accurate terminology. Review the provided links carefully to ensure you are up to date with

contemporary security practices.

Let’s showcase how your system might handle real-time security alerts effectively. As usual,

to avoid overwhelming your audience, copy 04.html to create 05.html, ensuring the previous

presentation state remains untouched if you decide not to proceed further in the demonstration.

We’ll add a simple, visually intuitive red alert banner to our flexible HTML interface:

<!-- Place this alert banner near the top of your container -->

<div id="securityAlert" style="display:none; background-color: #ffdddd;
color: #a94442; padding: 15px; border: 1px solid #ebccd1; border-radius:
4px; margin-bottom: 20px;">

 Security Alert: Suspicious activity detected.

</div>

Then, in your JavaScript, you can easily toggle its visibility based on certain conditions:

// Example function to display the alert

function showSecurityAlert() {

 document.getElementById('securityAlert').style.display = 'block';

https://www.ibm.com/think/topics/encryption
https://www.ibm.com/think/topics/encryption
https://aws.amazon.com/security/penetration-testing/
https://cloud.google.com/storage/docs/access-control/
https://cloud.google.com/storage/docs/access-control/
https://www.ibm.com/think/topics/incident-response

Presenting Your Business-Ready Generative AI System386

}

// Example function to hide the alert

function hideSecurityAlert() {

 document.getElementById('securityAlert').style.display = 'none';

}

// Simulate a security event after 5 seconds (for demonstration purposes)

setTimeout(showSecurityAlert, 5000);

red alert banner / 5 seconds

In this example, the alert banner appears automatically after five seconds, visually illustrating

how a real-time security notification might look. Read the code to be able to modify it in real

time or at least rapidly during a meeting if requested. Some customers might dislike the way it’s

displayed or its color.

Sometimes, modifying the frontend page shows your willingness to adapt to the customer’s

needs quickly, as we’ve reiterated several times now. On the other hand, careful and considered

modifications signal caution and reliability. Make a strategic choice depending on your under-

standing of your audience’s needs and expectations.

The alert can come from your system or the hosting environment. Now, let’s run the code to

display the updated interface:

display_interface("/content/05.html")

A security alert will be displayed after five seconds, as illustrated here:

Figure 10.16: A security alert banner in real time

The security alert conditions must be precisely defined during the project’s implementation stage

to ensure alignment with the customer’s exact security policy. With security and privacy consid-

erations addressed, let’s now move on to the nuanced and often challenging area of customization.

Chapter 10 387

6. Customization
As with most software, the GenAISys’s path to success relies on our ability to customize an appli-

cation. No matter how hard we try, the end users will request interface and process evolutions. We

can ignore them or accept them. The middle ground is to accept the requests that are feasible and

within the scope of the project, and find as many realistic workarounds as possible for evolutions

that would require fundamental modifications.

There are many possible customization approaches; here, we focus on a practical three-phase,

human-centric customization method:

•	 Phase 1: Customizing the frontend HTML page through brainstorming workshops with

as many groups as necessary

•	 Phase 2: Creating an isolated sandbox to add features to the GenAISys you built progres-

sively

•	 Phase 3: Integrating the sandbox evolutions step by step in the HTML page (documen-

tation and stabilization)

Figure 10.17: A three-phase human-centric customization process

All three phases will progress continuously in workshop cycles. Reinforce your participants’ roles

as active co-creators, rather than passive consumers of technology who only express their wishes.

Again, copy 05.html and name it 06.html. Add some icons to trigger reactions from the audience

so that they can express their creativity, ideas, and needs. If you succeed in involving your audi-

ence, you’re already on your way to success.

Presenting Your Business-Ready Generative AI System388

The icons in this code come from Font Awesome. They are made available by including the Font

Awesome CSS library via a link in <head>. Then, the icons are inserted throughout the HTML us-

ing <i> tags with the appropriate Font Awesome classes. Here are the key snippets that you can

customize in real time or near-real time during your workshops:

1.	 Import the Font Awesome library:

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/
font-awesome/6.0.0-beta3/css/all.min.css">

2.	 Integrate the icons in the HTML:

•	 Gross margin KPI panel header:

<h2><i class="fas fa-chart-line"></i> Gross Margin</h2>

•	 User selector label:

<label for="userSelector"><i class="fas fa-user"></i> User:</
label>

•	 Message input label:

<label for="messageInput"><i class="fas fa-comment"></i> Your
Message:</label>

•	 Send button:

<button id="sendButton" title="Send your message"><i
class="fas fa-paper-plane"></i> Send</button>

•	 Reasoning selector label:

<label for="reasoningSelector"><i class="fas fa-brain"></i>
Reasoning:</label>

•	 Model selector label:

<label for="modelSelector"><i class="fas fa-robot"></i>
Model:</label>

Chapter 10 389

Each snippet leverages Font Awesome’s intuitive icon library (such as fas fa-chart-line, fas

fa-user, etc.), ensuring clear visual communication of each component’s purpose. Here, too, you’ll

have to be prepared to swiftly modify these icons in real time during workshops to demonstrate

your agility in adapting to user feedback.

Now, run the web page to visualize your icon-rich interface:

display_interface("/content/06.html")

The page now contains icons, as illustrated in the following excerpt of the HTML page:

Figure 10.18: Customizing the web page with icons

Do not take this topic lightly! An end user only sees the frontend web page and its outputs (text,

images, and popups). Spend all the necessary time listening to the customer (your colleagues

or external customers). The more the end users work with you in this area, the more it becomes

their GenAISys.

Presenting Your Business-Ready Generative AI System390

The tricky part is fitting in phase 2 (GenAISys) development and phase 3 (GenAISys and web

page integration). You can fast-track the project by implementing all three phases in parallel, as

illustrated in Figure 10.19.

Figure 10.19: Working in teams on all three phases in parallel on-site or remotely

The choice depends on the project and your vision. Your deployment approach will create the

continual momentum required for a fast-tracked, eventful, optimized time-to-market project.

However, each project advances at its own speed, and the best pace is the one the users choose,

giving them time to adapt to your cutting-edge GenAISys.

At some point, you will inevitably need to explain the resources required for the project and its

associated costs. So, let’s move on and discuss that.

7. GenAISys resources (RACI)
Every successful software project clearly specifies the human and machine resources required.

Machine resources usually align closely with the platforms identified during the earlier integra-

tion discussion (refer to the Integration: Platforms and frameworks section in this chapter). Human

resources, however, require more careful consideration and explicit detailing using a structured

approach such as the RACI matrix outlined in Chapter 1. Recall that a RACI matrix classifies project

responsibilities into four categories:

Chapter 10 391

•	 R (Responsible): The person(s) who works actively on the task

•	 A (Accountable): The person(s) who is answerable for the success or failure of a task

•	 C (Consulted): In a complex project, this is the person(s) providing input, advice, and

feedback to help the others in a team, but they are not responsible for executing the work

•	 I (Informed): These are the people who are kept informed about a task’s progress or

outcome

Section 7 (RACI) of the notebook provides a practical example of a RACI matrix specifically de-

signed for the GenAISys we’ve developed in this book. Figure 10.20 shows an excerpt from this

RACI ideation, providing a concrete starting point to build your project-specific RACI:

Figure 10.20: Excerpt of the RACI ideation for the GenAISys built in this book

While presenting, you will need to explain that the RACI Matrix for GenAISys Implementation

ideation clearly outlines a coordinated, cross-functional approach to deploying an advanced AI

system:

•	 The project manager provides overall strategic oversight and leads planning and docu-

mentation

•	 At the same time, the AI/ML engineer drives the technical aspects—ranging from Deep-

Seek activation and model integration to API setups, machine learning functionalities,

and comprehensive testing

•	 The DevOps engineer’s responsibility is to set up the environment, configure hardware

resources, and manage deployment and scalability

Presenting Your Business-Ready Generative AI System392

•	 In contrast, the software developer focuses on coding interactive interfaces and handler

registries and supporting features such as text to speech

•	 Meanwhile, the business/CTO role offers strategic guidance, ensures key decisions are

aligned with organizational goals, and upholds compliance and security measures, ensur-

ing every stage—from initial setup through ongoing maintenance—is effectively managed

Using the RACI matrix as your reference point will take you directly to the costs you must esti-

mate and negotiate (in your company, for investors, or with a customer). Clearly defined roles

will help you put a number to the human hours, allocate budgets effectively, and identify areas

requiring specialized expertise. This allows you to transparently estimate project costs, negotiate

resource allocation internally or externally, and segment your project into manageable milestones

or deliverables.

And with that, you are now business-ready for a GenAISys. The market is yours to conquer!

Summary
In this chapter, we designed a strategic framework for showcasing a business-ready GenAISys

amid intense market competition. We saw that technological innovation alone is not enough to

secure customers or funding. A compelling business narrative must accompany the technical proof

of concept to demonstrate real-world value. One fast-track approach is to begin with a concise

introduction of the team and quickly establish our credibility and expertise. Then, pivot the pre-

sentation to a clear explanation of the GenAISys we have built, underpinned by real-time KPIs.

We designed a flexible frontend web page to demonstrate the system’s capabilities. The idea is

to have an adaptable HTML page that can be modified in real time or rapidly, depending on the

situation. The frontend web page translates the IPython interface we built into an accessible,

customizable HTML display. Live data updates and real-time simulations reinforce the system’s

practical impact. We designed a narrative that stresses the GenAISys’s adaptability and ability

to evolve with customer needs. At all times, you saw how you could drill down into the main

concepts taught in this book and enhance them with your developments. You also have your own

GenAISys built from scratch and ready to present, which can be adapted to the specifications of

the project you are working on.

This chapter favored a human-centric approach, ensuring AI augments rather than replaces

expert decision-making. The system is positioned as a collaborative tool designed to boost op-

erational efficiency. Real-time KPIs can reinforce the GenAISys’s profitability and strengthen the

bonds between the GenAISys and the teams using it. Innovative features such as vector stores

Chapter 10 393

enhance data retrieval for improved outputs. We showed how to present a forward-looking vision

by demonstrating a prospective evolution of the system into a swarm-based MAS, proving the

framework’s scalability and introducing the powerful narrative of human-AI co-worker collab-

oration. We presented integration with major cloud platforms and ERP systems. We showed the

possibility of integrating services such as AWS, Google Cloud, and Microsoft Azure, highlighting

the versatility. Security and privacy were addressed rigorously through possible real-time alerts

and adaptive measures.

Flexibility remains key, enabling the system to meet diverse enterprise requirements. The ap-

proach balances cutting-edge technology with tangible business outcomes. An iterative process

encourages customization based on ongoing client feedback. We presented interactive workshops

as a means of tailoring the system on the fly. A RACI matrix was introduced to delineate roles

and streamline project management clearly. Ultimately, the chapter provided a comprehensive

blueprint for deploying a dynamic, market-ready GenAISys presentation. We balanced technical

depth with clear business benefits.

You are now business-ready to design, build, and deliver a GenAISys!

Questions
1.	 Presenting a business-ready generative AI system (GenAISys) requires no preparation.

(True or False)

2.	 There is no need for a frontend GenAISys for demonstration purposes. (True or False)

3.	 There is no need to explain what a vector store is during a presentation. (True or False)

4.	 Pinecone is the best vector store on the market. (True or False)

5.	 Only OpenAI and DeepSeek can provide generative AI models. (True or False)

6.	 Open source generative AI models are superior to those that do not share their code. (True

or False)

7.	 We need to develop our own security and privacy software for a GenAISys. (True or False)

8.	 There is no need to customize our GenAISys if we think it is good. (True or False)

9.	 All customization meetings should be held face to face and on-site. (True or False)

10.	 There is no need to present the resources necessary to implement our GenAISys. (True

or False)

Presenting Your Business-Ready Generative AI System394

References
•	 IBM, What is encryption?: https://www.ibm.com/think/topics/encryption

•	 AWS, Penetration Testing: https://aws.amazon.com/security/penetration-testing/

•	 Google Cloud, Overview of access control: https://cloud.google.com/storage/docs/
access-control/

•	 IBM, What is incident response?: https://www.ibm.com/think/topics/incident-response

•	 Microsoft Teams API: https://learn.microsoft.com/en-us/graph/api/resources/

teams-api-overview?view=graph-rest-1.0

•	 Zoom API: https://developers.zoom.us/docs/api/

Further reading
•	 Amazon documentation: https://aws.amazon.com/

•	 Microsoft Azure: https://azure.microsoft.com/en-us/

•	 Google Cloud: https://cloud.google.com/?hl=en

•	 IBM Cloud: https://www.ibm.com/consulting/cloud

Subscribe for a Free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/TRO5B or scan the QR code below.

https://www.ibm.com/think/topics/encryption
https://www.ibm.com/think/topics/encryption

https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/

https://cloud.google.com/storage/docs/access-control/
https://cloud.google.com/storage/docs/access-control/
https://cloud.google.com/storage/docs/access-control/

https://www.ibm.com/think/topics/incident-response
https://www.ibm.com/think/topics/incident-response

https://learn.microsoft.com/en-us/graph/api/resources/teams-api-overview?view=graph-rest-1.0
https://learn.microsoft.com/en-us/graph/api/resources/teams-api-overview?view=graph-rest-1.0
https://developers.zoom.us/docs/api/
https://developers.zoom.us/docs/api/

https://aws.amazon.com/
https://azure.microsoft.com/en-us/
https://cloud.google.com/?hl=en
https://www.ibm.com/consulting/cloud
https://packt.link/TRO5B

Answers

Chapter 1
1.	 No, a GPT model performs tasks only. The AI controller is necessary to orchestrate and

manage tasks dynamically.

2.	 No, memoryless sessions process each request independently and remember nothing.

3.	 Yes, RAG retrieves specific data in documents.

4.	 Yes, human expertise is necessary from design to production and maintenance.

5.	 Yes, the AI controller dynamically adapts task order based on input context.

6.	 Yes, the goal is to optimize development cost and time.

7.	 Yes, these systems require computing power, skilled teams, and substantial budgets.

8.	 Yes, long-term memory retains exchanges beyond a single session.

9.	 Yes, vector stores can store knowledge and instruction scenarios.

10.	 No, contextual awareness is fundamental to detect the key points of an LLM request.

Chapter 2
1.	 False. A ChatGPT-like AI agent is a highly integrated generative AI system with several

components.

2.	 False. Although online platforms have seamless frameworks, the systems are built with

intelligent controllers.

3.	 True. The fundamental rule in GenAISys is: “No humans, no GenAISys.”

Answers396

4.	 True. In general, the prompt of a GenAISys will contain a precise task tag such as “sum-

marize this text.”

5.	 True. In some cases, an AI controller orchestrator can determine the most probable task

to perform based on the user input.

6.	 False. GPT-4o can natively perform semantic text similarity tasks.

7.	 True. Each project is different and requires different types of conversations that we must

design and code.

8.	 False. Sometimes, we need to have access to the full history of a conversation with a

copilot to make a decision.

9.	 False. GPT-4o can run in several languages.

10.	 False. The illusion of sentient AI agents or self-consciousness comes from the fact that

the user dialogues are seamless.

Chapter 3
1.	 False. Generative AI systems requires teams of AI specialists, ML experts, and many more

experts. Also, computing and, therefore automating tasks, comes with a cost.

2.	 False. We must continually monitor the cost-benefits of the features we are building into

GenAISys.

3.	 True. When a vector search is performed, the retrieval system can target specific areas

of data.

4.	 False. Complex data may require more dimensions, but for simpler data, smaller dimen-

sions are sufficient.

5.	 True. Upserting is the process of uploading vectorized data into a Pinecone database.

6.	 False. A namespace is only a subset of records in a Pinecone database.

7.	 True. A namespace can be used to query specific parts of a dataset.

8.	 True. To perform vector similarity searches, we must embed the input into vectors also.

9.	 True. A metric such as cosine similarity will enable the system to find a vector with data

similar to the user input. However, other metrics are possible depending on the need,

such as Euclidean distances.

10.	 True. A comprehensive GenAISys requires an AI controller, an AI conversational agent,

and more.

﻿ 397

Chapter 4
1.	 True. The complexity of generative AI must not be a constraint for the users. The goal is

to help them in their workplace.

2.	 False. Each project requires specific interfaces that can be built with web frameworks or

classical software interfaces or integrated seamlessly into existing software.

3.	 True and False. The GenAISys needs to provide knowledge that a generative AI model

such as GPT-4o cannot know, such as specific company data. However, in other cases, a

model such as GPT-4o can provide sufficient information and perform tasks quite well.

4.	 False. Your imagination is the limit! Each project may require custom features that are

not available in standard ChatGPT-like copilots.

5.	 True. We can store embedded instruction scenarios in Pinecone, retrieve them, and aug-

ment the input to a generative AI model with those instructions.

6.	 False. The namespace can be used to distinguish instruction scenarios from data.

7.	 True. A generative AI model such as GPT-4o learns general information but not specific

memories within an organization. Fine-tuning personal memories in a model can be costly

and time-consuming. Storing them in Pinecone and managing them there can be effective.

8.	 True and False. True if the users only want to use the AI conversational agent with a vector

store. False in a multi-user conversation in which the AI conversational agent is only a

participant like all the other members of a team.

9.	 True and False. True because we could add a querying functionality to the GenAISys in-

terface. False because we can implement response RAG triggers that the conversational

agent will manage.

10.	 True. The best way to help users is to provide intuitive interfaces.

Chapter 5
1.	 False. A seamless GenAISys shows that the interface is seamless, but it does not prove

that it did not take much work to get the job done.

2.	 False. Building a GenAISys requires a great amount of work.

3.	 True and False. It is possible to build an interface for an AI application that is not event-driv-

en, but it might lack flexibility.

4.	 True. An AI system can mimic human reasoning as in a chain-of-thought process.

5.	 False. A classical sequence of functions cannot match the creativity of a generative AI

chain of tasks in which each task reacts to the output of the previous task.

Answers398

6.	 False. A CoT can be multimodal.

7.	 True. A CoT process can include AI functions with intermediate calls to non-AI functions.

8.	 True. This is one of the productive features of a reasoning GenAISys.

9.	 True. The challenges of a growing and accelerating economy require automation. AI is an

effective way to automate problem-solving.

10.	 True. Using AI to boost the productivity of a team can alleviate difficult tasks and leave

room for more decision-making time and creativity.

Chapter 6
1.	 True. Emotional memory creates a bond between a person and a promotional message.

2.	 True. OpenAI’s o3 can reason and perform chain-of-thought tasks.

3.	 False. Humans can remember emotions many years after an event and as far back as

childhood.

4.	 False. A generative AI model such as o3 can understand complex prompts and memory

structures.

5.	 True. Generative AI models can now process numerical values to some extent, as well as

natural language.

6.	 True. A Pinecone index can contain vectorized instructions that can be retrieved with a

similarity query.

7.	 True. The early generative AI models could only process relatively simple prompts. Now,

they can understand complex steps of tasks and perform them well.

8.	 True. A simple user input can trigger a complex thread-of-reasoning scenario.

9.	 True. A reasoning model analyzes a prompt and has the ability to go through several steps

to perform a complex set of tasks to process reviews.

10.	 False. A generative AI system can interpret complex prompts and perform the set of tasks

requested.

Chapter 7
1.	 False. DeepSeek was trained as other LLMs’ but with efficient techniques.

2.	 True.

3.	 True.

4.	 False. DeepSeek-R1 was the teacher, and the Llama model was the student.

﻿ 399

5.	 True. It was a complex cycle. R1 was derived from V3 to learn reasoning, and V3 learned

reasoning from R1.

6.	 True. A handler registry can contain as many handlers that point to AI functions as we

need. The handlers all being in the same format makes the GenAISys highly scalable and

expandable.

7.	 True. A handler selection mechanism can remain unchanged if we design the handlers

in a unique format. We can enhance the mechanism if necessary, but the core process

remains unchanged.

8.	 True and False. True because these models were trained on massive amounts of data

and contexts. False because in some cases, RAG will be necessary, for example. At one

point, fine-tuning may also be necessary, although the scope of generative AI models is

continually growing.

9.	 True. A well-designed GenAISys that fits the specifications of a project will be able to

expand with user requests and as the AI market evolves.

Chapter 8
1.	 False. A trajectory can be any sequence of events.

2.	 True. Solid, well-designed synthetic data can save many resources and accelerate GenAI-

Sys development.

3.	 False. Generative AI can now solve mathematical problems and time sequences, and many

perform a growing number of tasks beyond LLMs.

4.	 False. The whole purpose of expanding GenAISys is for everybody to be able to use this

technology.

5.	 True. We can use generative AI to design effective, complex prompts.

6.	 False. Trajectory predictions for missing data can be applied to a wide range of domains,

including fire disasters.

7.	 True. We see GenAISys and agentic innovations released continually.

Chapter 9
1.	 True. A vector search can find specific words and expressions that are otherwise chal-

lenging.

2.	 False. The GenAISys will not process inappropriate content if detected.

3.	 False. The OpenAI moderation’s API provides a wide range of categories.

Answers400

4.	 False. The GenAISys will flag the content and reject the request.

5.	 True. Real-time services that adapt to ever-changing conditions will give a company a

competitive edge.

6.	 True. Generative AI systems are evolving at full speed and the trend will be multi-user,

cross-domain, multimodal, and more as AI is increasingly integrating sensors.

7.	 False. WhatsApp, Zoom, and Teams, for example, are proven examples.

8.	 True. By automating many tasks but also providing interactive AI features, teams that use

a GenAISys will surpass companies that do not have the technology.

9.	 True. A customer panel is the best way to get real-time feedback. Naturally, the decision

is up to the team developing the GenAISys. But the recommendation stands: listen to the

market represented by customer panels if possible.

Chapter 10
1.	 False. Presenting a GenAISys requires careful preparation, or we will be unprepared for

the tough questions.

2.	 True and False. A flexible frontend interface that can be rapidly modified can be useful for

a complex project’s presentation. However, if the GenAISys is completely finalized, this

step may not be necessary. It’s a strategic presentation choice.

3.	 False. A simple reminder for experts should suffice. However, non-AI specialists might

want an educational explanation.

4.	 False. Although Pinecone is an excellent vector store, the best vector store is the one that

best fits the requirements of a given project.

5.	 False. Many other models can be found on Hugging Face and on various platforms. The

best model is the one that fits your project’s requirements.

6.	 False. Whether or not to choose open-source generative AI models depends on the goals

of the project we are working on.

7.	 True and False. We might have to implement our own security and privacy components

if it is necessary for a project. We might develop everything or add functions to existing

solutions. However, many customers might ask us to rely on existing platform frameworks

such as AWS, Microsoft Azure, and Google Cloud.

﻿ 401

8.	 True and False. You might want to control the versions of your product with a develop-

ment plan and not customize it for each request. However, some projects will require

customization, or GenAISys might not cover the scope.

9.	 True and False. Face-to-face meetings enable more human interactions. However, if the

teams are spread out in different locations, remote meetings can do the job.

10.	 False. In practically every project, human and machine resources are a constraint we must

address from the start to establish our credibility.

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Building AI Agents with LLMs, RAG, and Knowledge Graphs

Salvatore Raieli, Gabriele Iuculano

ISBN: 978-1-83508-038-2

•	 Learn how LLMs work, their structure, uses, and limits, and design RAG pipelines to link

them to external data

•	 Build and query knowledge graphs for structured context and factual grounding

•	 Develop AI agents that plan, reason, and use tools to complete tasks

•	 Integrate LLMs with external APIs and databases to incorporate live data

•	 Apply techniques to minimize hallucinations and ensure accurate outputs

•	 Orchestrate multiple agents to solve complex, multi-step problems

•	 Optimize prompts, memory, and context handling for long-running tasks

•	 Deploy and monitor AI agents in production environments

Other Books You May Enjoy406

AI Agents in Practice

Valentina Alto

ISBN: 978-1-80580-134-4

•	 Master core agent components like LLMs, memory systems, tool integration, and context

management

•	 Build production-ready AI agents using frameworks like LangChain with code

•	 Create effective multi-agent systems using orchestration patterns for problem-solving

•	 Implement industry-specific agents for e-commerce, customer support, and more

•	 Design robust memory architectures for agents with short and long-term recall

•	 Apply responsible AI practices with monitoring, guardrails, and human oversight

•	 Optimize AI agent performance and cost for production environments

Other Books You May Enjoy 407

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Building Business-Ready Generative AI System, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you pur-
chased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-
ering excellent quality content.

authors.packtpub.com
https://packt.link/r/1837020698
https://packt.link/r/1837020698

Index

A
Agent Communication Protocol (ACP) 384
AI controller 3

architecture, defining 40-42
GenAISys memory, building 6, 7
model-agnostic approach, to generative AI 5
model-agnostic approach, to generative AI

model 4
RAG core functions 8

AI controller orchestrator 41, 58
GPT model, working 61
implementing, for instruction

selection 64, 65
intent functionality 60, 61
scenario, running with generative AI

agent 70
scenario, selecting 66
workflow 58, 59

AI controller orchestrator, scenario
intent recognition, performing 68, 69
scenario selection, performing 68, 69
semantic analysis 71, 72
sentiment analysis 70, 71
task/instruction scenarios, defining 66-68

AI functions 251
analysis (memory) 256-258
chain of thought 256
fallback handler (memory-based) 261-266

generation 258, 259
image creation 259, 260
RAG 251
weather forecast function, adding 334, 335

analysis handler 249
automated guided vehicle (AGV) 373

B
backend engineer (BE) 12
business-ready GenAISys, components 2, 3

AI controller 3, 4
human roles 11

C
chain-of-thought (CoT) reasoning 152, 173

cognitive flow 175-177
in GenAISys, versus traditional software

sequences 174, 175
running, from user perspective 183-186

chat(user_message) function 121
cleanse function 54
cloud engineer (CE) 12
cognitive flow, COT reasoning 175-177

activities suggestion 181
decision tree classifier 178-180
image analysis 182
image generation 181
ML-baseline 177, 178

Index410

complex system message, designing
additional instructions 206
dimensions 205
memory analysis, running 207-209
memory encoding tags 204
model introduction 202
primary task recall 207
purpose 203
response format 206
role of agent 202, 203
sentiment score 205

consumer GenAISys memory agent
designing 191
GenAISys architecture, enhancing 196, 197
memory structures, defining 193-196
use case 191, 192

consumer memory agent
building 197, 198
complex system message, designing 202
content creation 212-215
custom message creation 215-217
hotel reviews dataset 198-201
image creation 215
memory and sentiment analysis 201
sentiment scores extraction 209-211
statistics 211, 212

contextual awareness and memory
retention 19

environment, setting up 20-22
long-term memory of multiple

session 33, 34
long-term memory session of multiple

cross-topic sessions 34, 35
short-term memory session 31, 32
stateless and memoryless session 28

conversational AI agent 41, 42, 125-129
environment, setting up 43

long-term memory retention 42
short-term memory retention 42

conversational AI agent workflow 43, 57
full-turn conversation loop 48
initial conversation, starting 44
long-term memory session 52-56
long-term multi-user memory 56, 57
running 50
short-term memory session 51, 52

conversational AI agent workflow, full-turn
conversation loop

API call, making 49
API response, appending 49
assistant’s response, displaying 49
conversation log, exiting 50
conversation log (loop), cleansing 49
conversation log, saving 50
Exit condition, checking 49
session termination 50
user input, appending to

messages object 49
user input prompt 48

conversational AI agent workflow, initial
conversation

API variables, initializing 45
conversation loop 47
initial API call, making 47
initial API response, appending 47
initial assistant’s response, appending 47
initial conversation log, cleansing 46
initial user input, handling 46
messages object, initializing 45
run_conversational_agent function 45
welcome message, printing 45

Corpus of Linguistic Acceptability (CoLA) 61
CoT loops 80

Index 411

D
data engineer (DE) 12
Data Privacy Framework (DPF) 377
data privacy officer (DPO) 14
data retrieval (data01) 255
data security function 312

building 321
Pinecone index, populating 321, 322
Pinecone index, querying 323-325

DeepSeek Hugging Face environment
setting up 232

DeepSeek-R1-Distill-Llama-8B 228
implementing 231
integrating 237, 238
model, downloading from 233
running 234-237

DeepSeek-R1 paper 227

E
emotional memory 193
episodic memory 7, 193
episodic query

with semantic undertone 29
event-driven GenAISys interface

AI agent enhancements 160-163
architecture 112, 113
enhancing 152-155
functionalities 163
image analysis 167-173
image generation 167-170
IPython interface enhancements 155-160

event-driven GenAISys interface,
environment setup 163

CoT reasoning 167

gTTS 165
machine learning 166, 167
OpenAI 164, 165

event-driven GenAISys interface processes
bot response, generating 124
building 114, 116
chat(user_message) function 121
continue process 123
exit process 122
input box event 121
modules and libraries, importing 117, 118
UI container widget, displaying 120
update_display function 124, 125
widgets, initializing 118, 119

F
fallback memory handler 250
flexible HTML interface

advanced frameworks, showcasing 380- 382
building 358-364
core GenAISys, presenting 364-367
customization 387-390
GenAISys resources (RACI) 390, 391
human-centric implementation 370
integration 377-380
MAS 380-382
real-time KPI, adding to web

interface 374, 375
ROI through growth 371-374
security and privacy 384-386
strategic integration options,

for MAS 383, 384
vector store, presenting 368-370

full-scale GenAISys 18
key characteristics 18
use case examples 19

Index412

G
GenAISys 39, 81

architecture, enhancing 196, 197, 310, 311
enabling 80
interactive use cases 337-352
mobility intelligence, adding 292-294
presentation, designing 356-358
running 335-337

GenAISys, business opportunities
and scope 16

full-scale GenAISys 18
hybrid approach 17
small-scale GenAISys 17

GenAISys interface 217
AI agent, enhancing 220
capabilities, generalizing 221-223
CoT widget, adding 218-220

GenAISys RACI 13-15
generation handler 249
generative AI model

executes 4
model-agnostic approach 4, 5
orchestrates 4

Google Cloud Platform (GCP) 92
GPT-4o

embedding 59
similarity search 59
task execution 59

GPT model
Corpus of Linguistic Acceptability

(CoLA) 61, 62
Semantic Textual Similarity Benchmark

(STSB) 63
summarization 64
translation task 63

graph neural networks (GNNs) 271

H
handler 240

versus if...then list 240
handler registry 227, 246

analysis handler 249
fallback memory handler 250
features 247
generation handler 249
image handler 249
Pinecone/RAG handler 248
reasoning handler 248
structure of key properties 247

handler selection mechanism 227, 244-246
data security function, building 321
file management 243
implementing, as orchestrator 238, 239
interactions 316
IPython interface modifications 240-242
moderation function,

implementing 317-320
security checks, running 325-328
security function, adding 312

human roles 11
GenAISys governance teams 11-13
GenAISys implementation 11-13
GenAISys RACI 13-15

hybrid approach 17
key characteristics 17
use case example 17

I
image analysis 171, 172
image creation handler 249
image generation 167-170
implicit memory 193

Index 413

instruction block 272
instruction tuning 273
IPython interface

handle_submission() logic 296
mobility value, handling in

update_display() 296
option in instruct_selector,

creating 294, 295
ipywidgets 117

K
K-means clustering (KMC) 10
k-nearest neighbors (KNN) 10

L
large language models (LLMs) 269
long-term memory (LTM) 191
long-term memory of multiple

cross-topic session 6
long-term memory of multiple session 6
long-term memory session 33, 34
long-term memory session of multiple

cross-topic sessions 34, 35

M
machine learning (ML) 2
mcontent 30
memory categories

Fiction Memory 195
Long-Term Memory 195
memoryless 194
Reality Memory 195
Short-Term Memory 194
Time Memory 195

memoryless session 28
verifying 30

memory structures 193
LTM 193
STM 193

message variables, for OpenAI function
additional context 285
converging 286
generation message 284, 285
system message 283, 284
user message 285

ML engineer (MLE) 11
mobility 292
mobility-enhanced GenAISys

fire disaster scenario 305, 306
production-delivery verification

scenario 300- 305
running 299, 300

mobility intelligence
adding, to IPython interface 294
AI functions 298
handler selection mechanism 297

model-agnostic approach
to generative AI model 4, 5

Model Context Protocol (MCP) 384
model evolution

balancing, with project needs 228
moderation function 312

implementing 317
multi-agent system (MAS) 380

features 381
strategic integration options 383, 384
workflow overview 382

multi-turn GenAISys session 129, 130
conversation, displaying 136-138

Index414

conversation, loading 136- 141
conversation, summarizing 138-141
interactive conversation 132-135

multi-user session 141
conversation, displaying 148
conversation, loading 148
conversation, summarizing 148
dialogue without AI conversational

agent 146, 147
generative AI agent 145, 146
RAG for episodic memory retrieval 144, 145
semantic analysis 141-143
sentiment analysis 141, 142

N
natural language understanding (NLU) 1

O
on_submit method 119
OpenAI API call 26-28
OpenAI API key initialization

methods 24, 25
OpenAI function

messages, implementing 286-288
sending, with message variables 283

OpenAI resources
downloading 23
installing 23, 24
OpenAI API call 26, 27
OpenAI API key initialization 24

OpenWeather API
URL 328

P
Pinecone

installing 82, 83

Pinecone API key
initializing 84

Pinecone console
reference link 370

Pinecone index
building 81
chunks, embedding 88-90
classical data, upserting 99
creating 90-95
data chunking 86, 99-101
data loading 85, 99-101
data processing 85
dataset, embedding 87
embedding model, initializing 87, 88
environment, setting up 81, 82
instruction scenarios, identifying with 79
instruction scenarios, upserting 95- 99
queries, processing 105, 106
querying 102
results, returning 104
retrieval queries 106-108
vector store, querying 104

Pinecone/RAG handler 248
prediction function

instructions, preparing 283
OpenAI function 283

procedural memory 193
product designer and production manager

(PDPM) 228
project manager (PM) 11
proof of concept 310

Q
quality assurance engineer (QAE) 12
querying functions 103
question block 273

Index 415

R
RACI matrix 390

using 392
RAG core functions 8

agentic orchestrator of multifunctional
capabilities 9, 10

context window optimization 9
knowledge retrieval 8

RAG function 251
data retrieval (data01) 255
semantic analysis (genaisys) 254, 255
sentiment analysis (genaisys) 253

reasoning handler 248
recurrent neural networks (RNNs) 271
Responsible, Accountable, Consulted, and

Informed (RACI) 13
heatmap roles 14

retrieval-augmented generation (RAG) 1, 75
architecting for dynamic retrieval 76
components 76, 77
hybrid retrieval 80
instruction scenarios, identifying in

Pinecone index 79-81
scenario-driven task execution 77-79

run_conversational_agent function
parameters 45

S
security engineer (SE) 12
security function

adding, to handler selection
mechanism 312

implementing 313, 314
semantic analysis 71, 72

semantic analysis (genaisys) 254, 255
semantic memory 7, 193
semantic query 29
Semantic Textual Similarity

Benchmark (STSB) 63
sentiment analysis 70, 71
sentiment analysis (genaisys) 253
short-term memory session 6, 31, 32
short-term memory (STM) 191
small-scale GenAISys 17

key characteristics 18
use case examples 18

stateless and memoryless session 6
stateless session 28

verifying 30
subject-matter expert (SME) 302

T
Text-to-Text Transfer Transformer (T5) 60
trajectory simulation

analysis and prediction 288- 292
creating 276-278
mobility orchestrator, creating 280-282
output 280
visualizing 279, 280

trajectory simulation and prediction
framework 270

instruction tuning, for domain
adaptation 273

large-scale mobility forecasting,
challenges 271

missing data, handling 273, 274
pivotal innovations 272

Index416

traditional models, migrating to LLMs 272
trajectory prediction, reformulating

as Q&A 272
trajectory simulation and prediction

function
building 274, 275

V
vector store 368

W
weather forecast component

building 328, 329
handle, adding to handler registry 333
OpenWeather environment,

setting up 329-331
weather forecast function, adding to ai

functions 334, 335
weather widget, adding to

interface 332, 333

Join our Discord and Reddit space
You’re not the only one navigating fragmented tools, constant updates, and unclear best

practices. Join a growing community of professionals exchanging insights that don’t make it

into documentation.

Stay informed with updates, discussions,

and behind-the-scenes insights from our

authors. Join our Discord at https://packt.

link/z8ivB or scan the QR code below:

Connect with peers, share ideas, and discuss

real-world GenAI challenges. Follow us on

Reddit at https://packt.link/0rExL or

scan the QR code below:

https://packt.link/z8ivB
https://packt.link/z8ivB
https://packt.link/0rExL

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Your Book Comes with Exclusive Perks – Here’s How to Unlock Them

	Chapter 1: Defining a Business-Ready Generative AI System
	Components of a business-ready GenAISys
	AI controllers
	Model-agnostic approach to generative AI
	Building the memory of a GenAISys
	RAG as an agentic multifunction co-orchestrator

	Human roles
	GenAISys implementation and governance teams
	GenAISys RACI

	Business opportunities and scope
	Hybrid approach
	Key characteristics
	Use case examples

	Small scope and scale
	Key characteristics
	Use case examples

	Full-scale GenAISys
	Key characteristics
	Use case examples

	Contextual awareness and memory retention
	Setting up the environment
	Downloading OpenAI resources

	1. Stateless and memoryless session
	Semantic query
	Episodic query with a semantic undertone
	Stateless and memoryless verification

	2. Short-term memory session
	3. Long-term memory of multiple sessions
	4. Long-term memory of multiple cross-topic sessions

	Summary
	Questions
	References
	Further reading

	Chapter 2: Building the Generative AI Controller
	Architecture of the AI controller
	Conversational AI agent
	Setting up the environment
	Conversational AI agent workflow
	Starting the initial conversation
	The full-turn conversation loop
	Running the conversational AI agent

	Next steps

	AI controller orchestrator
	Understanding the intent functionality
	From T5 to GPT models
	Corpus of Linguistic Acceptability (CoLA)
	Translation task
	Semantic Textual Similarity Benchmark (STSB)
	Summarization

	Implementing the orchestrator for instruction selection
	Selecting a scenario
	Defining task/instruction scenarios
	Performing intent recognition and scenario selection

	Running scenarios with the generative AI agent
	Sentiment analysis
	Semantic analysis

	Summary
	Questions
	References
	Further reading

	Chapter 3: Integrating Dynamic RAG into the GenAISys
	Architecting RAG for dynamic retrieval
	Scenario-driven task execution
	Hybrid retrieval and CoT

	Building a dynamic Pinecone index
	Setting up the environment
	Installing Pinecone
	Initializing the Pinecone API key

	Processing data
	Data loading and chunking
	Embedding the dataset

	Creating the Pinecone index

	Upserting instruction scenarios into the index
	Upserting classical data into the index
	Data loading and chunking

	Querying the Pinecone index
	Querying functions
	Querying the vector store and returning results
	Processing the queries

	Retrieval queries

	Summary
	Questions
	References

	Chapter 4: Building the AI Controller Orchestration Interface
	Architecture of an event-driven GenAISys interface
	Building the processes of an event-driven GenAISys interface
	1. Start
	2. Initialize widgets
	3. Display the UI
	4. Input box event
	5. chat(user_message) function
	6. If ‘exit’ is chosen
	7. If user(s) continue the conversation
	8. Generate bot response
	9. Update display

	Conversational agent
	Multi-user, multi-turn GenAISys session
	A session with two users
	The interactive conversation
	Loading and displaying the conversation
	Loading and summarizing the conversation

	Multi-user session
	Semantic and sentiment analysis
	RAG for episodic memory retrieval
	Generative AI agent for ideation
	Dialogue without an AI conversational agent
	Loading, displaying, and summarizing the conversation

	Summary
	Questions
	References
	Further reading

	Chapter 5: Adding Multimodal, Multifunctional Reasoning with Chain of Thought
	Enhancing the event-driven GenAISys interface
	IPython interface and AI agent enhancements
	Layer 1: IPython interface
	Layer 2: AI agent
	Layer 3: Functions

	Setting up the environment
	OpenAI
	Initializing gTTS, machine learning, and CoT

	Image generation and analysis
	Image generation
	Image analysis

	Reasoning with CoT
	CoT in GenAISys versus traditional software sequences
	Cognitive flow of CoT reasoning
	Start
	Step 1: ML-baseline
	Step 2: Suggest activities
	Step 3: Generate image
	Step 4: Analyze image
	End

	Running CoT reasoning from a user perspective
	Summary
	Questions
	References

	Chapter 6: Reasoning E-Marketing AI Agents
	Designing the consumer GenAISys memory agent
	Consumer-memory agent use case
	Defining memory structures
	Enhancing the architecture of the GenAISys

	Building the consumer memory agent
	The dataset: Hotel reviews
	Step 1: Memory and sentiment analysis
	Designing a complex system message for Step 1
	Running the memory analysis

	Step 2: Extract sentiment scores
	Step 3: Statistics
	Step 4: Content creation
	Step 5: Creating an image
	Step 6: Creating a custom message

	GenAISys interface: From complexity to simplicity
	Adding the CoT widget
	Enhancing the AI agent
	Generalizing the GenAISys capabilities

	Summary
	Questions
	References
	Further reading

	Chapter 7: Enhancing the GenAISys with DeepSeek
	Balancing model evolution with project needs
	DeepSeek-V3, DeepSeek-V1, and R1-Distill-Llama: Overview
	Getting started with DeepSeek-R1-Distill-Llama-8B
	Setting up the DeepSeek Hugging Face environment
	Downloading DeepSeek
	Running a DeepSeek-R1-Distill-Llama-8B session
	Integrating DeepSeek-R1-Distill-Llama-8B

	Implementing the handler selection mechanism as an orchestrator of the GenAISys
	What is a handler?
	Why is a handler better than a traditional if...then list?

	1. IPython interface
	File management

	2. Handler selection mechanism
	3. Handler registry
	Pinecone/RAG handler
	Reasoning handler
	Analysis handler
	Generation handler
	Image handler
	Fallback memory handler

	4. AI functions
	RAG
	Sentiment analysis (genaisys)
	Semantic analysis (genaisys)
	Data retrieval (data01)

	Chain of thought
	Analysis (memory)
	Generation
	Creating an image
	Fallback handler (memory-based)

	Summary
	Questions
	References
	Further reading

	Chapter 8: GenAISys for Trajectory Simulation and Prediction
	Trajectory simulations and predictions
	Challenges in large-scale mobility forecasting
	From traditional models to LLMs
	Key contributions of the paper
	Reformulating trajectory prediction as a Q&A
	Instruction tuning for domain adaptation
	Handling missing data

	Building the trajectory simulation and prediction function
	Creating the trajectory simulation
	Visualizing the trajectory simulator
	Output of the simulation function

	Creating the mobility orchestrator
	Preparing prediction instructions and the OpenAI function
	Message preparation
	Fitting the messages together

	Implementing the messages into the OpenAI API function
	Trajectory simulation, analysis, and prediction

	Adding mobility intelligence to the GenAISys
	IPython interface
	Creating the option in instruct_selector
	Handling the “mobility” value in update_display()
	handle_submission() logic

	Handler selection mechanism
	AI functions

	Running the mobility-enhanced GenAISys
	Production-delivery verification scenario
	Fire disaster scenario

	Summary
	Questions
	References
	Further reading

	Chapter 9: Upgrading the GenAISys with Data Security and Moderation for Customer Service
	Enhancing the GenAISys
	Adding a security function to the handler selection mechanism
	Implementing the security function
	Handler selection mechanism interactions
	Implementing the moderation function
	Building the data security function
	Populating the Pinecone index
	Querying the Pinecone index

	Running security checks

	Building a weather forecast component
	Setting up the OpenWeather environment
	Adding a weather widget to the interface
	Adding a handle to the handler registry
	Adding the weather forecast function to AI functions

	Running the GenAISys
	A multi-user, cross-domain, and multimodal dialogue

	Summary
	Questions
	References
	Further reading

	Chapter 10: Presenting Your Business-Ready Generative AI System
	Designing the presentation of the GenAISys
	Building a flexible HTML interface
	1. Presenting the core GenAISys
	2. Presenting the vector store
	3. Human-centric approach to KPIs
	ROI through growth
	Adding a real-time KPI to the GenAISys web interface

	4. Integration: Platforms and frameworks
	Showcasing advanced frameworks: A MAS
	Strategic integration options for the MAS

	5. Security and privacy
	6. Customization
	7. GenAISys resources (RACI)

	Summary
	Questions
	References
	Further reading

	Answers
	Other Books You May Enjoy
	Index

